Project description:Microbiota-induced cytokine responses participate in gut homeostasis, but the cytokine balance at steady-state and the role of individual bacterial species in setting the balance remain elusive. Using gnotobiotic mouse models, we provide a systematic analysis of the role of microbiota in the induction of cytokine responses in the normal intestine. Colonization by a whole mouse microbiota orchestrated a broad spectrum of pro-inflammatory (Th1, Th17) and regulatory T cell responses. Unexpectedly, most tested complex microbiota and individual bacteria failed to efficiently stimulate intestinal cytokine responses. A potent cytokine-inducing function was however associated with non-culturable host-specific species, the prototype of which was the Clostridia-related Segmented Filamentous Bacterium, and this bacterial species recapitulated the coordinated maturation of T cell responses induced by the whole mouse microbiota. Our study demonstrates the non-redundant role of microbiota members in the regulation of gut immune homeostasis. Germfree (GF) female 8-9-week-old mice were gavaged twice at a 24-hr interval with 0.5 mL of fresh anaerobic cultures of fecal homogenate from SFB mono-associated mice, fresh feces from Cv mice (Cvd) or from a healthy human donor (Hum). All mice were sacrificed on d8, 20 and 60 post-colonization in parallel to age-matched Cv and GF controls. RNA was extracted from ileal tissue, and processed to biotin-labelled cRNA, and then hybridized to the NuGO array (mouse) NuGO_Mm1a520177. Microarray analysis compared gene expression in ileum tissue of all the treatment groups GF, Cv, Cvd, Hum and SFB (N=3 per treatment group per time-point). Data was considered significant when P<0.05 using the Benjamini and Hochberg false discovery method.
Project description:Microbiota-induced cytokine responses participate in gut homeostasis, but the cytokine balance at steady-state and the role of individual bacterial species in setting the balance remain elusive. Using gnotobiotic mouse models, we provide a systematic analysis of the role of microbiota in the induction of cytokine responses in the normal intestine. Colonization by a whole mouse microbiota orchestrated a broad spectrum of pro-inflammatory (Th1, Th17) and regulatory T cell responses. Unexpectedly, most tested complex microbiota and individual bacteria failed to efficiently stimulate intestinal cytokine responses. A potent cytokine-inducing function was however associated with non-culturable host-specific species, the prototype of which was the Clostridia-related Segmented Filamentous Bacterium, and this bacterial species recapitulated the coordinated maturation of T cell responses induced by the whole mouse microbiota. Our study demonstrates the non-redundant role of microbiota members in the regulation of gut immune homeostasis.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the inflammatory disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that a substantial amount of uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here we identify a gene cluster, widely distributed in the gut microbiome, that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids such as acetate, lactate and butyrate. Ablation of the microbiota in uricase-deficient mice causes profound hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.
Project description:The gut microbiota is considered the host's "second genome" and is closely associated with the host's physiology. We found that the elimination of gut bacteria suppressed ovarian development in Bactrocera dorsalis. Proteomic analysis revealed significant differences in ovarian protein expression after gut bacteria depletion, with differentially expressed proteins enriched in the proteasome and ubiquitin-related pathway. Moreover, ubiquitination levels were significantly reduced in gut bacteria-depleted females, while Enterobacter hormaechei (EH) supplementation rescued ubiquitination levels. Our findings suggest that ubiquitination serves as a mediator through which gut bacteria regulate ovarian development. By ubiquitin-modified proteomic analysis following gut microbiota manipulation and EH supplementation, we aimed to identify ubiquitination targets critical for ovarian development.
Project description:Advanced age is associated with chronic low-grade inflammation, which is usually referred to as inflammaging. Elderly are also known to have an altered gut microbiota composition. However, whether inflammaging is a cause or consequence of an altered gut microbiota composition is not clear. In this study gut microbiota from young or old conventional mice was transferred to young germ-free mice. Four weeks after gut microbiota transfer immune cell populations in spleen, Peyer’s patches, and mesenteric lymph nodes from conventionalized germ-free mice were analyzed by flow cytometry. In addition, whole-genome gene expression in the ileum was analyzed by microarray. Gut microbiota composition of donor and recipient mice was analyzed with 16S rDNA sequencing. Here we show by transferring aged microbiota to young germ-free mice that certain bacterial species within the aged microbiota promote inflammaging. This effect was associated with lower levels of Akkermansia and higher levels of TM7 bacteria and Proteobacteria in the aged microbiota after transfer. The aged microbiota promoted inflammation in the small intestine in the germ-free mice and enhanced leakage of inflammatory bacterial components into the circulation was observed. Moreover, the aged microbiota promoted increased T cell activation in the systemic compartment. In conclusion, these data indicate that the gut microbiota from old mice contributes to inflammaging after transfer to young germ-free mice.
Project description:The emerging alphavirus chikungunya virus (CHIKV) has infected millions of people. However, the factors modulating disease outcome remain poorly understood. We show that depletion of the gut microbiota in oral antibiotic-treated or germ-free mice leads to greater CHIKV infection and spread within one day of virus inoculation. Perturbation of the gut microbiota alters TLR7-MyD88 signaling in plasmacytoid dendritic cells (pDCs) and blunts systemic production of type I interferon (IFN). Consequently, circulating monocytes express fewer IFN-stimulated genes and become permissive for CHIKV infection. Reconstitution with a single commensal bacterial species, Clostridium scindens, or its derived metabolite, the bile acid deoxycholic acid, can restore pDC- and MyD88-dependent type I IFN responses to restrict systemic CHIKV infection and transmission back to vector mosquitoes. Thus, commensal gut bacteria modulate antiviral immunity and levels of circulating alphaviruses within hours of infection through a bile acid-pDC-IFN signaling axis, which affects virus dissemination and potentially, epidemic spread 3 biological replicates were processed per time point and group
Project description:The emerging alphavirus chikungunya virus (CHIKV) has infected millions of people. However, the factors modulating disease outcome remain poorly understood. We show that depletion of the gut microbiota in oral antibiotic-treated or germ-free mice leads to greater CHIKV infection and spread within one day of virus inoculation. Perturbation of the gut microbiota alters TLR7-MyD88 signaling in plasmacytoid dendritic cells (pDCs) and blunts systemic production of type I interferon (IFN). Consequently, circulating monocytes express fewer IFN-stimulated genes and become permissive for CHIKV infection. Reconstitution with a single commensal bacterial species, Clostridium scindens, or its derived metabolite, the bile acid deoxycholic acid, can restore pDC- and MyD88-dependent type I IFN responses to restrict systemic CHIKV infection and transmission back to vector mosquitoes. Thus, commensal gut bacteria modulate antiviral immunity and levels of circulating alphaviruses within hours of infection through a bile acid-pDC-IFN signaling axis, which affects virus dissemination and potentially, epidemic spread
Project description:The mammalian gut harbors a diverse microbial community (gut microbiota) that mainly consists of bacteria. Their combined genomes (the microbiome) provide biochemical and metabolic functions that complement host physiology. Maintaining symbiosis seems to be a key requirement for health as dysbiosis is associated with the development of common diseases. Previous studies indicated that the microbiota and the hostM-bM-^@M-^Ys epithelium signal bidirectional inducing transcriptional responses to fine-tune and maintain symbiosis. However, little is known about the hostM-bM-^@M-^Ys responses to the microbiota along the length of the gut as earlier studies of gut microbial ecology mostly used either colonic or fecal samples. This is of importance as not only function and architecture of the gut varies along its length but also microbial distribution and diversity. Few recent studies have begun to investigate microbiota-induced host responses along the length of the gut. However, these reports used whole tissue samples and therefore do not allow drawing conclusions about specificity of the observed responses. Which cells in the intestinal tissue are responsible for the microbially induced response: epithelial, mesenchymal or immune cells? Where are the responding cells located? Furthermore, the gut microbiota has been implicated in epigenetic regulation of the hostM-bM-^@M-^Ys transcriptional profile. We used using extensive microarray analysis of laser capture microdissection (LCM) harvested ileal and colonic tip and crypt fractions from germ-free mice before and during the time course of colonization with a normal microbiota (on days 1, 3, 5 and 7) to investigate the microbiota-induced transcriptional responses and their kinetics in specific and well-defined cell populations of the hostM-bM-^@M-^Ys epithelium. Ileum and colon segments were dissected from germ-free 10-12 weeks old female C57Bl/6 mice and on day 1, 3, 5 and 7 after colonization, washed and frozen as OCT blocks. Cryosections were prepared from these OCT blocks and tip/crypt fractions isolated using laser capture microdissection. To investigate the microbiota-induced transcriptional responses specific for specific subpopulations of intestinal epithelial cells and their kinetics, tip and crypt fractions of ileal and colonic epithelium of germ-free 10-12 weeks old female C57Bl/6 mice before and during the time course of colonization with a normal microbiota (on days 1, 3, 5 and 7) were harvested using laser capture microdissection and probed in an extensive microarray analysis.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.