Project description:We used a mouse expressing three alleles 1) KitV558Delta/+ activating allele that develop GIST-like tumors in the cecum, 2) Etv1 flox/flox conditional knockout allele and 3) Rosa26-CreERT2 tamoxifen activated Cre allele. Mice were treated with either Tamoxifen (to delete Etv1) or corn oil (control). Cecal tumors were isolated for gene expression profiling by RNA-Seq. Expression profile mouse cecal GIST tumor with or without Etv1 ablation was generated by RNA-Seq
Project description:We used a mouse expressing three alleles 1) KitV558Delta/+ activating allele that develop GIST-like tumors in the cecum, 2) Etv1 flox/flox conditional knockout allele and 3) Rosa26-CreERT2 tamoxifen activated Cre allele. Mice were treated with either Tamoxifen (to delete Etv1) or corn oil (control). Cecal tumors were isolated for gene expression profiling by RNA-Seq.
Project description:To profile the expression of circulating microRNAs (miRNAs) of mice in experimental sepsis by cecal ligation and puncture (CLP), the whole blood samples were obtained from C57BL/6 mice at 4, 8, and 24 h following CLP for miRNA expression analysis using a miRNA array (The Mouse & Rat miRNA OneArray® v3). Briefly, mice were anesthetized with a combination of ketamine and xylazine as the anesthetic/analgesic agents and a midline abdominal incision was made. The cecum was mobilized, ligated in the middle of cecum below the ileocecal valve, punctured once with a 21 G needle, and a little stool was squeeze out of the cecum to induce polymicrobial peritonitis. The abdominal wall was closed in two layers. Sham-operated mice underwent the same procedure, including opening the peritoneum and exposing the bowel, but without ligation and needle perforation of the cecum.
2015-05-15 | GSE47094 | GEO
Project description:Chicken cecum single cell RNA-seq
Project description:It has been widely recognized that the microbiota has the capacity to shape host gene expression and physiological functions. However, there remains a paucity of comprehensive study revealing host transcriptional landscape regulated by the microbiota. Here, we comprehensively examined mRNA landscapes in mouse tissues (brain and cecum) from specific pathogen free (SPF) and germ-free mouse (GF) using Nanopore direct RNA sequencing. Our results show that the microbiome has global influence on host’s RNA modifications (m6A, m5C, Ψ), isoform generation, poly(A) tail length (PAL), and transcript abundance in both brain and cecum tissues. Moreover, the microbiome exerts tissue-specific effects on various post-transcriptional regulatory processes. In addition, the microbiome impacts the coordination of multiple RNA modifications in host brain and cecum tissues. In conclusion, we establish the relationship between microbial regulation and gene expression, our results help the understanding of the mechanisms by which the microbiome reprograms host gene expression.
Project description:It has been widely recognized that the microbiota has the capacity to shape host gene expression and physiological functions. However, there remains a paucity of comprehensive study revealing host transcriptional landscape regulated by the microbiota. Here, we comprehensively examined mRNA landscapes in mouse tissues (brain and cecum) from specific pathogen free (SPF) and germ-free mouse (GF) using Nanopore direct RNA sequencing. Our results show that the microbiome has global influence on host’s RNA modifications (m6A, m5C, Ψ), isoform generation, poly(A) tail length (PAL), and transcript abundance in both brain and cecum tissues. Moreover, the microbiome exerts tissue-specific effects on various post-transcriptional regulatory processes. In addition, the microbiome impacts the coordination of multiple RNA modifications in host brain and cecum tissues. In conclusion, we establish the relationship between microbial regulation and gene expression, our results help the understanding of the mechanisms by which the microbiome reprograms host gene expression.