Project description:De novo assembly of the genome and transcriptome of Trioza erytreae (Hemiptera: Triozidae) and identification of insecticide-related genes
Project description:Trioza erytreae is the main vector for 'Candidatus Liberibacter africanus', the causative agent of African Citrus Greening disease. The insect is widespread in Africa, and has recently disseminated to Southwestern Europe. This study aimed at generating reference mitogenome sequences for T. erytreae, as a background for future genetic diversity surveys. Complete mitochondrial sequences of three specimens collected in Ethiopia, Uganda and South Africa were recovered using Ion Torrent technology. The mitogenomes of T. erytreae from Uganda and Ethiopia were highly similar, and distinct from that found in South Africa. The phylogeographic structure of T. erytreae was assessed using genetic clustering and pairwise distances, based on a dataset of public COI sequences recorded as T. erytreae. The dataset revealed ten haplotypes with strong phylogeographic structure in Africa and Europe. Three haplotypes found in Kenya on Clausena anisata belonged to pairs separated by distances as high as 11.2%, and were basal to all other sequences. These results indicate that not all sequences identified as T. erytreae belong to the same species, and that some degree of specificity with different plant hosts is likely to exist. This study provides new baseline information on the diversity of T. erytreae, with potential implications for the epidemiology of African Citrus Greening disease.
Project description:Carrot psyllid Trioza apicalis is a serious pest of cultivated carrot and also a vector of the plant pathogen 'Candidatus Liberibacter solanacearum' (Lso). To find out whether T. apicalis harbours other species of bacteria that might affect the Lso infection rate, the bacterial communities and metagenome in T. apicalis were studied. Lso haplotype C was detected in a third of the psyllids sampled, at different relative amounts. Surprisingly, T. apicalis was found to harbour only one secondary endosymbiont, a previously unknown species of gamma proteobacterium endosymbiont (Gpe), beside the primary endosymbiont 'Candidatus Carsonella ruddii' (CCr). The relative abundancies of these two endosymbionts were approximately equal. The genomes of CCr, Gpe and Lso were assembled from a T. apicalis metagenome sample. Based on the 16S rRNA gene, the closest relative of Gpe of T. apicalis could be a secondary endosymbiont of Trioza magnoliae. The 253.171 kb Gpe genome contains all the tRNA and rRNA genes and most of the protein-coding genes required for DNA replication, transcription and translation, but it lacks most of the genes for amino acid biosynthesis. Gpe has no genes encoding cell wall peptidoglycan synthesis, suggesting it has no cell wall, and could thus live as an intracellular endosymbiont. Like the CCr of other psyllids, CCr of T. apicalis retains a broad amino acid biosynthetic capacity, whilst lacking many genes required for DNA replication and repair and for transcription and translation. These findings suggest that these two endosymbionts of T. apicalis are complementary in their biosynthetic capabilities.