Project description:This experiment was designed to investigate the effect of Fumonisin B1 exposure on liver gene expression in male mice fed a regular diet (Chow group) and in obese mice which were fed a High fat diet (HFD). The Fumonisin B1 was provided through the drinking water.
Project description:Adult (8 week old) female mice from mixed genetic background (Sv129/C57Bl6J) were either treated with water or with FB1 for one month prior to liver gene expression analysis.
Project description:Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium species. In mammals, this toxin causes multiple organ-specific damages. Among its multiple effects, FB1 promotes hepatotoxicity, is immunotoxic and alters the intestinal functions. Despite its inhibitory effect on de novo ceramide synthesis, the molecular mechanism of FB1 action and toxicity remain unclears. In order to explore the mechanism of FB1 toxicity, we analyzed the transcriptome of the spleen.
Project description:Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium species. In mammals, this toxin causes multiple organ-specific damages. Among its multiple effects, FB1 promotes hepatotoxicity, is immunotoxic and alters the intestinal functions. Despite its inhibitory effect on de novo ceramide synthesis, the molecular mechanism of FB1 action and toxicity remain unclears. In order to explore the mechanism of FB1 toxicity, we analyzed the transcriptome of the liver which is targeted by FB1.
Project description:Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium species. In mammals, this toxin causes multiple organ-specific damages. Among its multiple effects, FB1 promotes hepatotoxicity, is immunotoxic and alters the intestinal functions. Despite its inhibitory effect on de novo ceramide synthesis, the molecular mechanism of FB1 action and toxicity remain unclears. In order to explore the mechanism of FB1 toxicity, we analyzed the transcriptome of the jejunal section which is targeted by FB1.
Project description:Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium species. In mammals, this toxin causes multiple organ-specific damages. Among its multiple effects, FB1 promotes hepatotoxicity, is immunotoxic and alters the intestinal functions. Despite its inhibitory effect on de novo ceramide synthesis, the molecular mechanism of FB1 action and toxicity remain unclears. In order to explore the mechanism of FB1 toxicity, we analyzed the transcriptome of the jejunal Peyer's patches.
Project description:To identify genes underpinning the antagonistic effects of extracellular ATP on programmed cell death induced by fumonisin B1 (FB1), we conducted a kinetic DNA microarray experiment using samples harvested in the critical time window when exogenous ATP is known to suppress cell death. Arabidopsis cell suspension cultures were treated with FB1 at time = 0 h and exogenous ATP added at time = 40 h. Differential gene expression analysis using microarrays was performed on samples harvested at 41, 42, 44, and 48 h.
Project description:Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium species. In mammals, this toxin causes multiple organ-specific damages. Among its multiple effects, FB1 promotes hepatotoxicity, is immunotoxic and alters the intestinal functions. Despite its inhibitory effect on de novo ceramide synthesis, the molecular mechanism of FB1 action and toxicity remain unclears. In order to explore the mechanism of FB1 toxicity in multiple tissues, we analyzed the transcriptome of the jejunal section, liver, spleen and jejunal Peyer's patches which are targeted by FB1.
Project description:Fusarium verticillioides poses a high food safety risk worldwide due to its mycotoxin production. Successful control of Fusaria may rely on promising biocontrol agents, including yeasts. Although the fission yeast Schizosaccharomyces pombe tolerated Fusarium mycotoxins well, including zearalenone, T2, deoxynivalenol, and fumonisins (FUMs), it did not significantly inhibit the growth of F. verticillioides. Meanwhile fumonisin B1 (FB1) supplementation did not decrease S. pombe cell density in submerged liquid cultures, the colony-forming capability of the yeast was reduced. RNA sequencing showed that S. pombe genes involved in cell adhesion and flocculation were down-regulated after FB1 exposure. In addition, the expression of several hydrolase genes was also altered. In co-cultures with F. verticillioides, genes encoding oxidoreductases and hydrolases and those linked to purine nucleotide metabolisms were down-regulated, while the expression of genes involved in membrane and transport processes was increased. The expression of several F. verticillioides genes also changed after co-cultivation. Oxidoreductase, transmembrane transport, and purine metabolism genes were up-regulated under co-culturing, meanwhile hydrolase genes, together with carbon metabolism and polysaccharide catabolism genes were down-regulated. Co-cultivation also decreased fumonisin production via the down-regulation of genes FUM19, FUM21, and FvATFA encoding the fumonisin transporter, a local Zn(II)2Cys6-type transcriptional regulator and an important global regulator bZIP-type transcription factor, respectively. Although further experiments should clarify the mechanism of the fission yeast-elicited inhibition of fumonisin production, these results may pave the way for the development and implementation of novel, innovative approaches to control mycotoxin production by F. verticillioides in the feed and food chain.