Project description:• Atypical hyperplasias (AH) provide insights into early changes that may predispose breast epithelial cells to oncogenic transformation. • Of genes associated with premalignancy in prior studies, only mRNA levels of ESR1 and SFRP1 were detected in the present study. • Transcriptional profiling defined signatures distinguishing atypical hyperplasias. The patterns of expression were similar among hyperplastic lesions of lobular and ductal phenotype suggesting a common set of alterations underlying both lesions. Pathway analyses identified elevated expression of estrogen receptor alpha, androgen receptor and EGFR receptors and Rho signaling as central events nodes in the pathways altered in AH. • A set of 43 genes were identified as common targets using 2 different algorithms to detect signatures associated with AH. Knockdown of SFRP1 in a TERT immortalized breast epithelial cell line resulted in 14 genes from this signature being either up-regulated or down-regulated as observed in the expression profiles from AH. • The results demonstrate a signature of genes representing alterations that are common to the development of hyperplasias in both ductal and lobular epithelium. Loss of SFRP1 expression is a key player underlying the transcriptional changes in AH that directs a module of genes that can be used to improve reproducibility of diagnosis of AH.
Project description:Transcriptional profiling of hyperplastic, metaplastic, and dysplastic lesions of the bronchus in comparison with normal bronchial epithelium. The aim was to identify transcripts and cell signalling pathways associated with the development of isolated premalignant lesions and/or lesions combined with each other in the same bronchial epithelium.
Project description:Lung squamous cell carcinoma (SCC) is thought to arise from premalignant lesions in the airway epithelium, therefore studying these lesions is critical for understanding lung carcinogenesis. We performed RNA sequencing on laser-microdissected representative cell populations along the SCC pathological continuum of patient-matched normal basal cells, premalignant lesions, and tumor cells. We discovered transcriptomic changes and identified genomic pathways altered with initiation and progression of SCC within individual patients. We used immunofluorescent staining to confirm gene expression changes in premalignant lesions and tumor cells, including increased expression of SLC2A1, CEACAM5, and PTBP3 at the protein level and increased activation of MYC via nuclear translocation. Cytoband enrichment analysis revealed coordinated loss and gain of expression in chromosome 3p and 3q regions, respectively, during carcinogenesis. This is the first gene expression profiling of airway premalignant lesions with patient-matched samples that provides insight into the mechanisms of stepwise lung carcinogenesis. Profiling of mRNA expression in laser-microdissected normal airway basal cells, premalignant airway lesions, and lung SCC tumor cells by massively parallel RNA sequencing.
Project description:Lung squamous cell carcinoma (SCC) is thought to arise from premalignant lesions in the airway epithelium, therefore studying these lesions is critical for understanding lung carcinogenesis. We performed RNA sequencing on laser-microdissected representative cell populations along the SCC pathological continuum of patient-matched normal basal cells, premalignant lesions, and tumor cells. We discovered transcriptomic changes and identified genomic pathways altered with initiation and progression of SCC within individual patients. We used immunofluorescent staining to confirm gene expression changes in premalignant lesions and tumor cells, including increased expression of SLC2A1, CEACAM5, and PTBP3 at the protein level and increased activation of MYC via nuclear translocation. Cytoband enrichment analysis revealed coordinated loss and gain of expression in chromosome 3p and 3q regions, respectively, during carcinogenesis. This is the first gene expression profiling of airway premalignant lesions with patient-matched samples that provides insight into the mechanisms of stepwise lung carcinogenesis.
Project description:Individuals who present with premalignant endobronchial lesions are considered at high risk of lung cancer. Nonetheless, premalignant lesions behave erratically and only a minority progresses towards lung cancer. Therefore, biomarkers need to be discovered that can aid in assessing an individual’s risk for subsequent cancer to better tailor treatment choices and avoid unnecessary follow-up procedures. We recently proposed a classifier of DNA copy number alterations (CNAs) at 3p26.3-p11.1, 3q26.2-29, and 6p25.3-24.3 as risk predictor for endobronchial cancer. The current study was set out to validate the classifier among an independent series of premalignant endobronchial lesions with various histological grades. A series of 36 endobronchial premalignant lesions (8 squamous metaplasia, and 28 various grades of dysplasia) identified during autofluorescence bronchoscopy of 12 case subjects who had carcinoma in situ or carcinoma (≥CIS) during follow-up bronchoscopy at the initial site and 24 control subjects who remained cancer-free, was subjected to array Comparative Genomic Hybridization (arrayCGH). DNA copy number profiles were related to lesion outcome. Prediction accuracy of the previously defined molecular classifier to predict endobronchial cancer in this series was determined. Unsupervised hierarchical clustering analysis revealed a significant association between cluster assignment and lesion outcome (p< 0.001), independent of histological grade, with quiescent profiles in controls (24/24) and aberrant profiles in the majority of cases (9/12). Our pre-defined classifier demonstrated 92% accuracy for predicting cancer outcome in the current sample series. Our validated classifier holds great promise for stratification of patients with premalignant endobronchial lesions for risk of subsequent cancer. Fresh frozen specimens of 36 premalignant endobronchial biopsies. Test samples were compared to an external pool of normal male/female reference DNA.
Project description:This portion of the study evaluated the effects of topical 10% black raspberry gel application on gene expression profiles of premalignant oral lesions. Topical application of the bioadhesive black rasberry gel was observed to modulate gene expression and reduce proinflammatory proteins in human premalignant oral lesions. Keywords: Human oral tissues treated with 10% berry gfel
Project description:Individuals who present with premalignant endobronchial lesions are considered at high risk of lung cancer. Nonetheless, premalignant lesions behave erratically and only a minority progresses towards lung cancer. Therefore, biomarkers need to be discovered that can aid in assessing an individual’s risk for subsequent cancer to better tailor treatment choices and avoid unnecessary follow-up procedures. We recently proposed a classifier of DNA copy number alterations (CNAs) at 3p26.3-p11.1, 3q26.2-29, and 6p25.3-24.3 as risk predictor for endobronchial cancer. The current study was set out to validate the classifier among an independent series of premalignant endobronchial lesions with various histological grades. A series of 36 endobronchial premalignant lesions (8 squamous metaplasia, and 28 various grades of dysplasia) identified during autofluorescence bronchoscopy of 12 case subjects who had carcinoma in situ or carcinoma (≥CIS) during follow-up bronchoscopy at the initial site and 24 control subjects who remained cancer-free, was subjected to array Comparative Genomic Hybridization (arrayCGH). DNA copy number profiles were related to lesion outcome. Prediction accuracy of the previously defined molecular classifier to predict endobronchial cancer in this series was determined. Unsupervised hierarchical clustering analysis revealed a significant association between cluster assignment and lesion outcome (p< 0.001), independent of histological grade, with quiescent profiles in controls (24/24) and aberrant profiles in the majority of cases (9/12). Our pre-defined classifier demonstrated 92% accuracy for predicting cancer outcome in the current sample series. Our validated classifier holds great promise for stratification of patients with premalignant endobronchial lesions for risk of subsequent cancer.
Project description:Oral epithelial dysplasias are believed to progress through a series of histopathological stages; from mild to severe dysplasia, to carcinoma in situ, and finally to invasive OSCC. Underlying this change in histopathological grade are gross chromosome alterations and changes in gene expression of both protein-coding genes and non-coding RNAs. Recent papers have described associations of aberrant expression of microRNAs, one class of non-coding RNAs, with oral cancer. However, expression profiling of long non-coding RNAs (lncRNAs) has not been reported. Long non-coding RNAs are a novel class of mRNA-like transcripts with no protein coding capacity, but with a variety of functions including roles in epigenetics and gene regulation. In recent reports, the aberrant expression of lncRNAs has been associated with human cancers, suggesting a critical role in tumorigenesis. Here, we present the first long non-coding RNA expression map for the human oral mucosa. We describe the expression of 325 long non-coding RNAs, suggesting lncRNA expression contributes significantly to the oral transcriptome. Intriguingly, 60% of the detected lncRNAs show aberrant expression in oral premalignant lesions. A number of these lncRNAs have been previously associated with other human cancers. A total of six normal oral samples and ten oral premalignant lesions were used to construct SAGE libraries which were then queried for long non-coding RNA expression profiles. The six normal oral samples were previously deposited as GSE8127.
Project description:Cellular senescence is a central barrier to tumorigenesis, acting to block the proliferation of premalignant cells. However, senescent cells residing within tumor lesions can also exert paracrine effects influencing tumor growth and progression. Premalignant pancreatic intraepithelial neoplasia (PanIN) lesions contain senescent cells, yet whether these influence disease progression is unknown. Here we report that senescent cells in PanINs that develop in a Kras-driven mouse model express a pro-inflammatory gene signature, which includes high Cox2 levels. Pharmacologic Cox2 inhibition caused a dramatic reduction in PanIN growth. Senolytic treatment with the Bcl2-family inhibitor ABT-737 reduced the numbers of Cox2-expressing PanIN cells and blocked PanIN formation and progression to carcinoma. These findings indicate that senescent PanIN cells support tumor growth and progression through Cox2 activity, representing crosstalk between interspersed senescent and dividing premalignant cells. Targeted elimination of senescent cells may thus be effective in limiting progression of precancerous lesions.