Project description:This clinical trial studies the effectiveness of a web-based cancer education tool called Helping Oncology Patients Explore Genomics (HOPE-Genomics) in improving patient knowledge of personal genomic testing results and cancer and genomics in general. HOPE-Genomics is a web-based education tool that teaches cancer/leukemia patients, and patients who may be at high-risk for developing cancer, about genomic testing and provide patients with information about their own genomic test results. The HOPE-Genomics tool may improve patient’s genomic knowledge and quality of patient-centered care. In addition, it may also improve education and care quality for future patients.
Project description:Microarray technology has evolved as a powerful tool over the last decade, to identify biomarkers and study the mechanisms of diseases. We propose a novel application of integrated genomics by combining transcriptional levels with serological antibody profiling after kidney transplantation, with the aim of uncovering the relative immunogenicity of seven different renal compartments after allo-transplantation. Thirty-six paired pre- and post-transplant serum samples were examined from eighteen transplant recipients, across 5,056 protein targets on the ProtoArray V3.0 platform. Normal renal compartment-specific gene expression data from a cDNA platform were re-analyzed and both the cDNA and the ProtoArray platforms were re-annotated to most up-to-date NCBI gene identifiers; 3,835 genes/proteins are measured on both platforms. Antibody levels were ranked for individual patients and the hypergeometric enrichment statistic was applied on mapped compartment-specific expression data. We discovered that after transplantation, in addition to HLA and MICA responses, temporal alloimmune responses are seen against non-HLA antigens specific to different compartments of the kidney, with highest level responses noted against renal pelvis and cortex specific antigens. The renal medulla is of low immunogenicity as none of the outer or inner medulla specific targets generated significant post-transplant antibody responses. Immunohistochemistry confirmed pelvis and cortex specific localizations of selected targeted antigens, supporting the robust nature of this discovery. This study provides a road map of renal compartment-specific non-HLA antigenic targets responsible for generating alloimmune responses, opening the door for clinical correlations with post-transplant dysfunctional states to be determined. Keywords: alloimmune response after kidney transplantation
Project description:Microarray technology has evolved as a powerful tool over the last decade, to identify biomarkers and study the mechanisms of diseases. We propose a novel application of integrated genomics by combining transcriptional levels with serological antibody profiling after kidney transplantation, with the aim of uncovering the relative immunogenicity of seven different renal compartments after allo-transplantation. Thirty-six paired pre- and post-transplant serum samples were examined from eighteen transplant recipients, across 5,056 protein targets on the ProtoArray V3.0 platform. Normal renal compartment-specific gene expression data from a cDNA platform were re-analyzed and both the cDNA and the ProtoArray platforms were re-annotated to most up-to-date NCBI gene identifiers; 3,835 genes/proteins are measured on both platforms. Antibody levels were ranked for individual patients and the hypergeometric enrichment statistic was applied on mapped compartment-specific expression data. We discovered that after transplantation, in addition to HLA and MICA responses, temporal alloimmune responses are seen against non-HLA antigens specific to different compartments of the kidney, with highest level responses noted against renal pelvis and cortex specific antigens. The renal medulla is of low immunogenicity as none of the outer or inner medulla specific targets generated significant post-transplant antibody responses. Immunohistochemistry confirmed pelvis and cortex specific localizations of selected targeted antigens, supporting the robust nature of this discovery. This study provides a road map of renal compartment-specific non-HLA antigenic targets responsible for generating alloimmune responses, opening the door for clinical correlations with post-transplant dysfunctional states to be determined. Keywords: alloimmune response after kidney transplantation Plasma profiling using Protein Microarray: Serum antibodies were profiled using Invitrogen ProtoArray® Human Protein Microarray v3.0 technology (Invitrogen, Carlsbad, CA). This platform contains 5,056 non-redundant human proteins expressed in a baculovirus system, purified from insect cells and printed in duplicate onto a nitrocellulose-coated glass slide. Five mL serum diluted in PBST buffer at 1:150 was applied for 90 minutes onto the Protoarray, after blocking with blocking buffer for 1 hour. The slides were then washed with 5ml fresh PBST buffer, 4 times for 10 minutes each, and probed with secondary antibody (goat anti-human Alexa 647, Molecular Probes, Eugene, OR) for 90 minutes. Finally, after a second washing with PBST buffer, the slides were dried and scanned using a fluorescent microarray scanner (GSI Luminoics Perkin-Elmer scanner). All steps were carried out on a rotating platform at 4 ºC. ProtoArray data acquisition and measurement: The slides were scanned at a PMT gain of 60% with a laser power of 90% and a focus point of 0 μm. Fluorescence intensity data were acquired using GenePix Pro 6.0 software (Molecular devices, Sunnyvale, CA) with the appropriate â.galâ file downloaded from the ProtoArray central portal on the Invitrogen website (http://www.invitrogen.com/protoarray) by submitting the barcode of each ProtoArray slide.
Project description:To determine the circRNA expression profile in hepar tissues of 12h after brain death donor liver transplantation and matched non-brain death donor liver transplantation, we uesed circRNA microArray analysis form Arraystar to examine the expression of circRNAs and circRNAs in hepar tissues of 12h after brain death donor liver transplantation and matched non-brain death donor liver transplantation.
Project description:Diabetes mellitus (DM) after transplantation remains a crucial clinical problem in kidney transplantation. To obtain insights into molecular mechanisms underlying the development of post-transplant diabetes mellitus (PTDM) and its early impact on glomerular structures, here we comparatively analyze the proteome of histologically normal appearing glomeruli from patients with PTDM from normoglycemic (NG) transplant recipients, and from recipients with pre-existing type 2 DM (PTDM)
Project description:This study represents the first quantitative analysis of the temporal changes in the small urinary extracellular vesicle proteome throughout living donor kidney transplantation identifying PCK2 abundance as a biomarker for renal function 12 months after transplantation
Project description:The aim of this study is to assess the Fecal Microbiota Transplantation (FMT) efficacy in the prevention of allogeneic hematopoietic stem cell transplantation (allo-HSCT) complications and particularly Graft versus Host Disease (GvHD).
The hypothesis of this study is that allogeneic FMT may improve outcomes of these patients.