Project description:Harnessing the self-organizing abilities of human embryonic stem cells to mimic normal and aberrant development is a pressing challenge. Generation of highly reproducible and standardized models would allow drug screening with unprecedented accuracy. Here we report single-cell RNA-seq data (10xGenomics) of human "neuruloids". Using micro-patterned technologies we recapitulate the self-organization of the complete human embryonic ectodermal compartment during neurulation containing: neural progenitors, neural crest, sensory placode and epidermis. Single-cell transcriptomics allowed the precise molecular characterization of each cell type in a faithful model of human neurulation. Additionally, isogenic neuruloids coupled to deep neural network analysis provide a unique opportunity to model human neuropathological disorders as demonstrated for Huntignton’s disease.
Project description:Vertebrate Hox genes are key players in the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was globally co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia) and also hairs (alopecia), a condition stronger than the previously reported loss of function of Hoxc13, which is causative of the ectodermal dysplasia 9 (ECTD9) syndrome in human patients. We further identified, in mammals only, two ectodermal-specific enhancers located upstream the gene cluster, which act synergistically to regulate Hoxc genes in these ectodermal organs. Deletion of these enhancers alone or in combination revealed a strong quantitative component in the regulation of these genes in the ectoderm, suggesting that these two enhancers may have evolved along with mammals to provide the level of HOXC proteins necessary for the full development of hairs and nails.
Project description:Vertebrate Hox genes are key players in the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was globally co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia) and also hairs (alopecia), a condition stronger than the previously reported loss of function of Hoxc13, which is causative of the ectodermal dysplasia 9 (ECTD9) syndrome in human patients. We further identified, in mammals only, two ectodermal-specific enhancers located upstream the gene cluster, which act synergistically to regulate Hoxc genes in these ectodermal organs. Deletion of these enhancers alone or in combination revealed a strong quantitative component in the regulation of these genes in the ectoderm, suggesting that these two enhancers may have evolved along with mammals to provide the level of HOXC proteins necessary for the full development of hairs and nails.
Project description:Biological adhesion (bioadhesion) is referred to attachment of organisms to either biotic or abiotic surfaces. The differentiated ectodermal basal disc cells of the freshwater cnidarian Hydra secrete proteinaceous glue to temporarily attach themselves to surfaces underwater. In this study, we investigate for the first time the protein content of adhesive secretions from the freshwater cnidarian Hydra magnipapillata strain 105. This secretome were analysed using mass spectrometry and resulting MS/MS data were searched against in silico translated H. magnipapillata transcriptome and results from gene expression.
Project description:Our comprehensive model identifies condition-dependent and compartment-specific constraints that can explain metabolic strategies and protein expression profiles from growth rate optimization, providin a framework to understand metabolic adaptation in eukaryal cells.
Project description:The response of ectodermal explants, neuralized by noggin and treated with cycloheximide, following activation of hormone-inducible zic1 injected into the parent embryos compared to those from beta globin injected embryos as controls, is expected to provide information on the direct targets of the Zic1 transcription factor. Experiment Overall Design: Activation of zic1 in ectodermal explants following inhibition of new protein synthesis allowed the direct targets of zic1 to be identified by comparison with controls. After RNA extraction, purification and checks with PCR with actin primers for any mesoderm contamination samples were prepared for hybridization to Xenopus laevis Affymetrix GeneChip arrays.