Project description:Reactive gliosis is a complex process that involves profound changes in gene expression. We used microarray to indentify differentially expressed genes and to investigate the molecular mechanisms of reactive gliosis in optic nerve head in response to optic nerve crush injury. C57Bl/6 female mice were 6-8 weeks old at the time of optic nerve crush surgery. The optic nerve in the left eye was crush 1 mm behind the globe for 10 seconds and the right eye served as contralateral control. The animals were allowed to recover for 1 day, 3 day, 1 week, 3 weeks and 3 months before the optic nerve heads were collected. The naive control mice did not receive any surgery in either eye. Due to the small tissue size of the mouse optic nerve head, two optic nerve heads were pooled together for each microarray chip. The left eyes and the right eyes of two mice were combined respectively to form one pair of experiment and control samples. There were five biological replicates (10 mice) for each condition.
Project description:Reactive gliosis is a complex process that involves profound changes in gene expression. We used microarray to indentify differentially expressed genes and to investigate the molecular mechanisms of reactive gliosis in optic nerve head in response to optic nerve crush injury.
Project description:The optic nerve is a white matter tract that conveys visual information to the brain. A detailed investigation of the proteome of the normal human retrobulbar optic nerve may help facilitate studies of the biology and pathophysiology of the optic nerve. We conducted an in-depth proteomic analysis of optic nerve from five adults. Proteins were fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. We identified 2,711 non-redundant proteins in the human retrobulbar optic nerve, including the astrocytic marker glial fibrillary acidic protein, several proteins expressed by oligodendrocytes (laminin, proteolipid protein, and fibronectin), myelin proteins (myelin basic protein, myelin-associated glycoprotein), paranodal structural proteins (neurofascin, contactin, α, β, and γ adducins, septin 2, endophilin, ankyrin β, spectrin), proteins involved in neuronal protection and regeneration (α crytallins A and B, dedicator of cytokinesis proteins, ciliary neurotrophic factor), proteins associated with open-angle glaucoma (thioredoxin, heat shock protein-70), and proteins associated with optic neuritis (aquaporin-4). Twenty-one unambiguous protein isoforms were identified in the optic nerve.
Project description:A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and in human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and on separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor β pathways, as well as extracellular matrix–receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes present three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.
Project description:Reactive astrocytes are typically studied in models that cause irreversible mechanical damage to axons, neuronal cell bodies, and glia. We evaluated the response of astrocytes in the optic nerve head to a subtle injury induced by a brief, mild elevation of the intraocular pressure. Astrocytes demonstrated reactive remodeling showing hypertrophy, process retraction and simplification of their shape. We used microarray to indentify differentially expressed genes and to investigate the molecular mechanisms of astrogliosis in response to this subtle injury. Six- to eight-week old C57Bl/6 male mice were used in this experiment. One eye underwent an elevation in intraocular pressure to 30 mmHg for 1 hour and then allowed to recover for 3 days. The contralateral eye served as a control. Due to the small tissue size of the mouse optic nerve head, two optic nerve heads were pooled together for each microarray chip. We used 10 mice to generate five biological replicates for each condition.
Project description:The optic nerve is a white matter tract that conveys visual information to the brain. A detailed investigation of the proteome of the normal human retrobulbar optic nerve may help facilitate studies of the biology and pathophysiology of the optic nerve. We conducted an in-depth proteomic analysis of optic nerve from five adults. Proteins were fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. We identified 2,711 non-redundant proteins in the human retrobulbar optic nerve, including the astrocytic marker glial fibrillary acidic protein, several proteins expressed by oligodendrocytes (laminin, proteolipid protein, and fibronectin), myelin proteins (myelin basic protein, myelin-associated glycoprotein), paranodal structural proteins (neurofascin, contactin, ?, ?, and ? adducins, septin 2, endophilin, ankyrin ?, spectrin), proteins involved in neuronal protection and regeneration (? crytallins A and B, dedicator of cytokinesis proteins, ciliary neurotrophic factor), proteins associated with open-angle glaucoma (thioredoxin, heat shock protein-70), and proteins associated with optic neuritis (aquaporin-4). Twenty-one unambiguous protein isoforms were identified in the optic nerve.
Project description:Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. Affymetrix Mouse Gene 1.0 ST arrays were utlized to detail the global gene expression profile following optic nerve crush (ONC) in the ON of BALB/cJ mice at six different days post crush (dpc) (naive, 3 dpc, 7 dpc, 14 dpc, 21 dpc and 28 dpc) to understand the pathogenic responses in relation to neuronal loss and regenerative failure.
Project description:Transcriptomic changes in the pre-chiasmatic optic nerve, retrobulbar optic nerve and retina of goats 1 day after optic nerve crush injury
Project description:Retinal ganglion cell (RGC) death is the final consequence of many blinding diseases, where there is considerable variation in the time course and severity of RGC loss. Indeed, this process appears to be influenced by a wide variety of genetic and environmental factors. In this study we explored the genetic basis for differences in ganglion cell death in two inbred strains of mice. We found that RGCs are more susceptible to death following optic nerve crush in C57BL/6J mice (54% survival) than in DBA2/J mice (62% survival). Using the Illumina Mouse-6 microarray, we identified 1,580 genes with significant change in expression following optic nerve crush in these two strains of mice. Our analysis of the changes occurring after optic nerve crush demonstrated that the greatest amount of change (44% of the variance) was due to the injury itself. This included changes associated with ganglion cell death, reactive gliosis, and abortive regeneration. The second pattern of gene changes (23% of the variance) was primarily related to differences in gene expressions observed between the C57BL/6J and DBA/2J mouse strains. The remaining changes in gene expression represent interactions between the effects of optic nerve crush and the genetic background of the mouse. We extracted one genetic network from this dataset that appears to be related to tissue remodeling. One of the most intriguing sets of changes included members of the crystallin family of genes, which may represent a signature of pathways modulating the susceptibility of cells to death. Differential responses to optic nerve crush between two widely used strains of mice were used to define molecular networks associated with ganglion cell death and reactive gliosis. These results form the basis for our continuing interest in the modifiers of retinal injury. 18 Samples: 9 per strain (C57BL/6J & DBA/2J); 3 conditions per strain
Project description:To gain a better understanding of the factors necessary for successful CNS regeneration, a temporal analysis of the changes in gene expression in the eye caused by optic nerve injury was conducted. Dual color oligonucleotide microarrays were used to compare total RNA harvested from the eyes of sham-operated and optic nerve-injured fish at 3, 24, and 168 hours following surgery. Optic nerve injured fish are compared to sham-operated fish in order to eliminate gene expression due to non-neuronal damage and inflammatory response. Statistical analyses identified 131 genes with a 2.0-fold or greater difference in expression. Wild type zebrafish were obtained from a local pet store. Optic nerve injury was conducted using a severing model accomplished as follows. Zebrafish were anesthetized in 0.2% MS-222 dissolved in tank water. The muscles surrounding the eye were cut and the eye angled rostrally to expose the nerve. The optic nerve was then severed using microsissors without damaging the ophthalmic artery. In sham operated fish the muscles surrounding the eye were severed but the nerve was not damaged. RNA was extracted from the eye at three time points following surgery 3 hours, 24 hours, and 168 hours. RNA was pooled from multiple fish to achieve 10 ug total RNA. Samples were collected in triplicate per time point. Gene expression was analyzed on a dual color oligonucleotide array where the optic nerve injured fish were compared to sham-operated fish. Four samples of RNA were also collected from control fish and compared to each other on the microarray to confirm that processing did not create expression differences.