ABSTRACT: Impacts of Solids Retention Time and Antibiotic Loading in Activated Sludge Systems on Secondary Effluent Water Quality and Microbial Community Structure
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 M-NM-<m). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2 exposed to the raw wastewater, effluents from three types of membrane bioreactors (MBRs), and the activated sludge process. Wastewater DNA microarray with 8795 human genes. MQ water was used as control. For duplicate, two dishes were prepared for each sample and individually treated in parallel.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 μm). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents.
Project description:Despite recent knowledge of the potential environmental impact that compounds present in municipal wastewater effluents, including contaminants of emerging concern (CECs), may have, the implications of fish exposure to this contaminant mixtures are not completely understood. The effects caused by effluent CECs may be subtle and diverse, thus the need for sensitive and comprehensive tools such as gene expression to detect such responses. In this study, we conducted laboratory exposures that examined plasma concentrations of vitellogenin (VTG), changes in secondary sexual characteristics and gene expression in sexually mature male fathead minnows (Pimephales promelas) exposed to environmentally realistic (0.5%) and higher (5%) concentrations of municipal wastewater effluents. Secondary and primary treated effluents were used. Several of the 32 CECs investigated were detected, including pharmaceuticals, personal care products, hormones, current use pesticides and industrial compounds. The percent of males with detectable levels of VTG was higher in fish exposed to effluent treatments. An increased number of males with changes in secondary sexual characteristics (e.g. development of ovipositors), was observed in fish exposed to 5% effluent treatments. Gene expression data indicated that overall expression patterns were characteristic to each effluent. Higher numbers of differentially expressed genes were observed in fish exposed to primary treated effluent when compared to controls. Differentially expressed genes belonged to several functional categories, including xenobiotic metabolism, estogenicity and energy/metabolism processes. Gene expression data provided information to understand some of the mechanisms behind the effects observed at higher biological levels. To investigate gene expression responses resulting from exposure to POTW effluents, two laboratory experiments were conducted using effluent from San Diego (Point Loma; SD) and Los Angeles (Hyperion; LA). The LA effluent received secondary treatment and the SD effluent received advanced primary treatment. Treatments used during exposures consisted of negative controls (moderately hard water), positive controls (E2), and 0.5% and 5% effluent concentrations. The 0.5% concentration of effluent represented an environmentally realistic exposure level. The 5% effluent concentration represented a higher level at which we expected biological responses. The exposures lasted 14 days. Treatments: EFFHa = 5% primary treated effluent EFFHb = 5% secondary treated effluent EFFLa = 0.5% primary treated effluent E2a = Estradiol, positive control for primary effluent E2b = Estradiol, positive control for secondary effluent CTRLa = Moderately hard water, negative control for primary effluent CTRLb = Moderately hard water, negative control for secondary effluent
Project description:We investigated the impacts of wastewater effluent exposure on gene expression in adult fathead minnows, a freshwater fish commonly used as an ecotoxicological model.
Project description:To investigate gene expression changes in fish by the secondary effluent (directly released to environment) of a waterwater treatment plant in Tucson, Arizona, zebrafish larvae with 5-day exposure to the original (1x) or half (0.5x) concentration of the effluent were analyzed using Agilent G2519F-026437 Zebrafish Oligo Microarray.
Project description:The antibiotic catabolic process and myeloid cell homeostasis were activated while the T-cell response were relatively repressed in those with the risk of secondary infection.
Project description:The federally endangered Okaloosa darter (Etheostoma okaloosae) is found almost exclusively on the Eglin Air Force Base in the Choctawhatchee Bay watershed of Florida. Portions of this limited habitat are threatened with erosion of soils, altered hydrology, and impaired water quality. One stream reach in particular, East Turkey Creek, has demonstrated potential water quality problems including poor invertebrate bioassessment scores (IBI), uncharacteristically high conductivity values, and low numbers of Okaloosa darters. General water quality (dissolved oxygen, specific conductance, pH, temperature, and relative turbidity and primary productivity) was characterized in both the potentially impacted East Turkey Creek and a reference stream (Long Creek). Water quality was assessed during a 30 day exposure using passive samplers for both non-polar and polar effluent parameters. Metal loading in the system was assessed via fish tissue burdens in resident Pteronotropis hypseleotris. Additionally, microarray analysis was performed on gonad and liver tissue from fathead minnows, Pimephales promelas, after 48-h exposures to water collected from the two creeks and brought into the laboratory. Gene expression changes were evident at the site below the influence of a wastewater spray field sited along East Turkey Creek, suggesting that anthropogenic compounds in the effluent waters may have affected both liver and testis function and could be related to account the general decrease in populations of the Okaloosa darter.
Project description:Effect of chlorination on the toxicity of wastewater effluents treated by activated sludge (AS) and submerged membrane bioreactor (S-MBRB) systems to HepG2 human hepatoblastoma cells was investigated. In addition to cytotoxicity assay, the DNA microarray-based transcriptome analysis was performed to evaluate the change in modes of toxic actions (MOAs) of effluents by chlorination. Effluent organic matters (EfOM) and disinfection by-products (DBPs) were characterized by using Fourier transform mass spectrometry (FT-MS). The cytotoxicity of AS effluent was elevated by chlorination, while the toxicity of S-MBRB effluent was reduced. The averaged O/C ratio of EfOM in S-MBRB effluent was lower than that in AS effluent. The results of the transcriptome and FT-MS analyses suggested that lower O/C molecules influenced on “response to hormone stimulus” and “acute inflammatory response” but those were decreased by chlorination, which consequently reduced cytotoxicity. On the other hand, larger number of DBPs and other molecules were increased in AS effluents by chlorination. Those molecules might influence on “cellular metabolic process”, which consequently elevated cytotoxicity. Therefore, the combination of the toxicity assays and chemical analysis demonstrated the changes in severity of cytotoxicity and MOAs by chlorination, and the difference of chemical characteristics which relate to those toxicity changes.
Project description:Effect of chlorination on the toxicity of wastewater effluents treated by activated sludge (AS) and submerged membrane bioreactor (S-MBRB) systems to HepG2 human hepatoblastoma cells was investigated. In addition to cytotoxicity assay, the DNA microarray-based transcriptome analysis was performed to evaluate the change in modes of toxic actions (MOAs) of effluents by chlorination. Effluent organic matters (EfOM) and disinfection by-products (DBPs) were characterized by using Fourier transform mass spectrometry (FT-MS). The cytotoxicity of AS effluent was elevated by chlorination, while the toxicity of S-MBRB effluent was reduced. The averaged O/C ratio of EfOM in S-MBRB effluent was lower than that in AS effluent. The results of the transcriptome and FT-MS analyses suggested that lower O/C molecules influenced on M-bM-^@M-^\response to hormone stimulusM-bM-^@M-^] and M-bM-^@M-^\acute inflammatory responseM-bM-^@M-^] but those were decreased by chlorination, which consequently reduced cytotoxicity. On the other hand, larger number of DBPs and other molecules were increased in AS effluents by chlorination. Those molecules might influence on M-bM-^@M-^\cellular metabolic processM-bM-^@M-^], which consequently elevated cytotoxicity. Therefore, the combination of the toxicity assays and chemical analysis demonstrated the changes in severity of cytotoxicity and MOAs by chlorination, and the difference of chemical characteristics which relate to those toxicity changes. We examined the gene expression alteration in human hepatoma cell line, HepG2 exposed to the chlorinated wastewater effluents from membrane bioreactor and the activated sludge process. Human Genome Focus Array, which represents 8,795 verified human sequences, was used. All effluent samples were concentrated by using solid phase extraction (SPE). SPE fraction from MQ water was used as controll. For duplicate, two dishes were prepared for each sample and individually treated in parallel.