Project description:During Drosophila melanogaster oogenesis, the JAK/STAT and EGFR pathways are both required to specify a population of somatic epithelial cells called the posterior follicle cells (PFCs). The PFCs are important because they generate a signal at mid-oogenesis that is required to establish the embryonic axes. To identify novel PFC-expressed transcripts, egg chambers containing ectopic PFCs were generated and microarrays were then used to identify upregulated transcripts. To generate ectopic PFCs, GAL80TS / CyO ; UAS-Upd, UAS-λtorpedo/TM6B flies were crossed to GR1-GAL4 flies to obtain the genotype GAL80TS/+ ; GR1-GAL4/UAS-Unpaired, UAS-λtorpedo. Sibling females of genotype GAL80TS/+ ; GR1-GAL4/TM6B were dissected as controls.
Project description:Although the JAK/STAT pathway regulates numerous processes in vertebrates and invertebrates through modulating transcription, its functionally-relevant transcriptional targets remain largely unknown. With one jak and one stat (stat92E), Drosophila provides a powerful system for finding new JAK/STAT target genes. Genome-wide expression profiling on eye discs in which Stat92E is hyperactivated, revealed 584 differentially-regulated genes, including known targets domeless, socs36E and wingless. Other differentially-regulated genes (chinmo, lama, Mo25, Imp-L2, Serrate, Delta) were validated and may represent new Stat92E targets. Genetic experiments revealed that Stat92E cell-autonomously represses Serrate, which encodes a Notch ligand. Loss of Stat92E led to de-repression of Serrate in the dorsal eye, resulting in ectopic Notch signaling and aberrant eye growth there. Thus, our micro-array documents a new Stat92E target gene and a previously-unidentified inhibitory action of Stat92E on Notch signaling. These data suggest that this study will be a useful resource for the identification of additional Stat92E targets. Identification of the JAK/STAT pathway target genes in the Drosophila eye disc Keywords: Genotype comparison Gene expression profiles from five biological replicates of eye discs with yw (control) and GMR-upd (overexpressing JAK/STAT ligand unpaired) were compared using genome wide mRNA expression profiling by Affymetrix genechip arrays (Drosophila 2.0) and key targets were validated by clonal analysis, in situ hybridization, immunohistochemical staining and quantitative real-time PCR.
Project description:Here we investigated the effects of JAK/STAT pharmacological inhibition on cHL cell models using ruxolitinib, a JAK 1/2 inhibitor. We use five classical Hodgkin lymphoma cell lines: L428, L1236, L540, KMH2, L591
Project description:Emerging evidence indicates that various cancers, including prostate, breast, melanoma and lung cancers, could gain resistance to targeted therapies by acquiring lineage plasticity. Although various genomic and transcriptomic aberrations correlate with lineage plasticity-driven resistance, the molecular mechanisms and kinetics of acquiring lineage plasticity are not fully elucidated. Through integrated transcriptomic and single cell RNA-seq (scRNA-seq) analysis of more than 80,000 cells, we show that the ectopic activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway drives lineage plasticity and Androgen Receptor (AR) targeted therapy resistance in PCa with TP53/RB1-deficiency. Ectopic activation of JAK-STAT signaling enables Heterogeneous and AR-independent subclones to emerge upon the selective pressure of AR targeted therapy, including subclones expressing multi-lineage, progenitor-like and epithelial to mesenchymal transition (EMT)-like lineage survival transcriptional programs. Both genetic and pharmaceutical inactivation of key components of the JAK-STAT signaling pathway significantly re-sensitizes resistant PCa tumors to AR targeted therapy. In summary, these results show for the first time that JAK-STAT signaling pathway is a key effector in driving lineage plasticity and represents a potential therapeutic target for overcoming AR targeted therapy resistance.
Project description:Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice – but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse transcription-regulatory programs, including gene regulation by STAT2 and IRF9 independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wildtype mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcription-regulatory state and helps prepare these cells for rapid response to immune stimuli.
Project description:Although the JAK/STAT pathway regulates numerous processes in vertebrates and invertebrates through modulating transcription, its functionally-relevant transcriptional targets remain largely unknown. With one jak and one stat (stat92E), Drosophila provides a powerful system for finding new JAK/STAT target genes. Genome-wide expression profiling on eye discs in which Stat92E is hyperactivated, revealed 584 differentially-regulated genes, including known targets domeless, socs36E and wingless. Other differentially-regulated genes (chinmo, lama, Mo25, Imp-L2, Serrate, Delta) were validated and may represent new Stat92E targets. Genetic experiments revealed that Stat92E cell-autonomously represses Serrate, which encodes a Notch ligand. Loss of Stat92E led to de-repression of Serrate in the dorsal eye, resulting in ectopic Notch signaling and aberrant eye growth there. Thus, our micro-array documents a new Stat92E target gene and a previously-unidentified inhibitory action of Stat92E on Notch signaling. These data suggest that this study will be a useful resource for the identification of additional Stat92E targets. Identification of the JAK/STAT pathway target genes in the Drosophila eye disc Keywords: Genotype comparison
Project description:This SuperSeries is composed of the following subset Series: GSE29517: ChIP-chip from Drosophila egg chambers using ORC2 antibody GSE29518: ChIP-chip from dissected Drosophila egg chambers using antibody recognizing RNAPII GSE29520: ChIP-chip from Drosophila egg chambers using antibody recognizing tetra-acetylated histone H4 GSE29526: Expression profile of 16C ovarian follicle cells Refer to individual Series
Project description:Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice – but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse transcription-regulatory programs, including gene regulation by STAT2 and IRF9 independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wildtype mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcription-regulatory state and helps prepare these cells for rapid response to immune stimuli.
Project description:Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice – but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse transcription-regulatory programs, including gene regulation by STAT2 and IRF9 independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wildtype mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcription-regulatory state and helps prepare these cells for rapid response to immune stimuli.