Project description:Transcriptional profiling of goat immune cells in different tissues. Goal was to determine the global gene expression profiles of different immune cell subsets, and determine the differences in gene expression between the same immune cell subset in different organs.
Project description:The goat of this project is to explore lncRNA55666 efffect on small RNA to regulation goat mammary gland lipid metabolism. We tried to search the mechanism of lncRNA55666 regulation lipid metabolism through miRNA. small RNA seqencing of goat mamamary gland cells samples from different groups: 5NC, lncRNA55666 overexpression, 3NC, lncRNA55666 knockdown. The goat mammary gland cells were cultured in 3D condition. The cell were transfected with virus with lncRNA55666 gene (overexpression), or inhibition of lncRNA expression (lncRNA gene knockdown).
Project description:The goat of this project is to explore cirRNA28250 efffect on small RNA to regulation goat mammary gland lipid metabolism. We tried to search the mechanism of cirRNA28250 regulation lipid metabolism through miRNA. small RNA seqencing of goat mamamary gland cells samples from different groups: 5NC, cirRNA28250 overexpression, 3NC,cirRNA28250 knockdown. The goat mammary gland cells were cultured in 3D condition. The cell were transfected with virus with cirRNA28250 gene (overexpression), or inhibition of cirRNA28250A expression (cirRNA28250 gene knockdown).
Project description:Local breeds retained unique genetic variability important for adaptive potential especially in light of challenges related to climate change. Our objective was to perform, for the first time, a genome-wide diversity characterization using Illumina GoatSNP50 BeadChip of autochthonous Drežnica goat breed from Slovenia. Genetic diversity analyses revealed that the Slovenian Drežnica goat has a distinct genetic identity and is closely related to the neighboring Austrian and Italian alpine breeds. These results expand our knowledge on phylogeny of goat breeds from easternmost part of the European Alps.
Project description:Purpose: miRNAs, a member of the small RNA, play critical roles in the mammalian spermatogenesis. Spermatogonia was the foundation of spermatogenesis and valuable for the study of spermatogenesis. However, it is still not clear that the expression profiling of the miRNAs in spermatogonia of dairy goat. Methods: The CD49f was one of the surface markers for spermatogonia enrichment by MACS. Therefore, we used CD49f microbeads antibody to purify CD49f-positive and negative cells of dairy goat testicular cells by MACS (Magnetic Activated Cell Sorting), and then in-depth analyzed the miRNA expression in these cells using Illumina sequencing technology. Results: The results of miRNAs expression profiling in purified CD49f-positive and negative testicular cells showed that 933 were miRNAs upregulated in CD49f-positive cells and 916 were miRNAs upregulated in CD49f-negative cells with a 2-fold increase, respectively; some spermatogonial stem cells(SSCs) specific miRNAs and marker genes in testis had a higher level expression in CD49f-positive testicular cells, such as miR-221, miR-23a, miR-29b, miR-24, miR-29a, miR-199b, miR-199a, miR-27a, miR-21. Conclusions: our comparative miRNAome data provided some useful miRNAs profiling data of dairy goat spermatogonia cells and suggested CD49f could be used to enrich dairy goat spermatogonia-like cells, including SSCs.
Project description:The goat of this project is to explore cirRNA28250 regulation goat mammary gland lipid metabolism. We tried to search the mechanism of cirRNA28250 regulation lipid metabolism. RNA-seq of goat mamamary gland cells samples from different groups: 5NC, cirRNA28250 overexpression, 3NC, cirRNA28250 knockdown. The goat mammary gland cells were cultured in 3D condition. The cell were transfected with virus with cirRNA28250 gene (overexpression), or inhibition of cirRNA28250 expression ( cirRNA28250 gene knockdown).
Project description:The goal of this project is to explore lncRNA55666 regulation goat mammary gland lipid metabolism. We tried to search the mechanism of lncRNA55666 regulation lipid metabolism. RNA-seq of goat mamamary gland cells samples from different groups: 5NC, lncRNA55666 overexpression, 3NC, lncRNA55666 knockdown. The goat mammary gland cells were cultured in 3D condition. The cell were transfected with virus with lncRNA55666 gene (overexpression), or inhibition of lncRNA expression (lncRNA gene knockdown).
Project description:Purpose: miRNAs, a member of the small RNA, play critical roles in the mammalian spermatogenesis. Spermatogonia was the foundation of spermatogenesis and valuable for the study of spermatogenesis. However, it is still not clear that the expression profiling of the miRNAs in spermatogonia of dairy goat. Methods: The CD49f was one of the surface markers for spermatogonia enrichment by MACS. Therefore, we used CD49f microbeads antibody to purify CD49f-positive and negative cells of dairy goat testicular cells by MACS (Magnetic Activated Cell Sorting), and then in-depth analyzed the miRNA expression in these cells using Illumina sequencing technology. Results: The results of miRNAs expression profiling in purified CD49f-positive and negative testicular cells showed that 933 were miRNAs upregulated in CD49f-positive cells and 916 were miRNAs upregulated in CD49f-negative cells with a 2-fold increase, respectively; some spermatogonial stem cells(SSCs) specific miRNAs and marker genes in testis had a higher level expression in CD49f-positive testicular cells, such as miR-221, miR-23a, miR-29b, miR-24, miR-29a, miR-199b, miR-199a, miR-27a, miR-21. Conclusions: our comparative miRNAome data provided some useful miRNAs profiling data of dairy goat spermatogonia cells and suggested CD49f could be used to enrich dairy goat spermatogonia-like cells, including SSCs. miRNA profiles of goat CD49f-positive and negative testicular cells were generated by deep sequencing, in triplicate, using Illumina GAIIx
Project description:To explore functional circRNAs during goat muscle development, we systematically investigated the circRNAs profiles using high throughput transcriptome sequencing technology (RNA-seq) at key developmental stages of fetus and Kid in Haimen goat.