Project description:In this study, we aim to present a global view of transcriptome dynamics during salinity stress in different chickpea genotypes. We generated about 600 million high-quality reads from 16 libraries (control and stress samples for two chickpea genotypes for salinity stress at two developmental stages) using Illumina high-throughput sequencing platform. We mapped the reads to the kabuli chickpea genome for estimation of their transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses between stress treatment and control sample for each genotype.
Project description:In this study, we aim to present a global view of transcriptome dynamics during drought stress in different chickpea genotypes. We generated about 800 million high-quality reads from 14 libraries (control and stress samples for two chickpea genotypes for drought stress at two developmental stages) using Illumina high-throughput sequencing platform. We mapped the reads to the kabuli chickpea genome for estimation of their transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses between stress treatment and control sample for each genotype.
Project description:In order to identify genes and pathways involved in drought tolerance, RNA was isolated from control and 15-days drought-stressed chickpea plants. Two chickpea genotypes, Desi PI598080 (“D”) and Kabuli Flip07 318C (“K”), respectively sensitive and tolerant to drought stresses were used. The 12 extracted RNAs (2 genotypes x 2 water regimes x 3 biological replicates) were sequenced, and the transcriptomic changes between the genotypes and water conditions were analysed. The genotype with higher drought sensitivity showed a generally higher change of gene transcripts than the genotype with less sensitivity, upregulating genes involved in photophosphorylation process (transferases, oxygen lyases and oxidoreductases), hormones (brassinosteroids, abscissic acid and gibberellin response), solute transporters, nutrient uptake and cell wall properties (cellulose synthases, hemicellulose synthases, poligalacturonases, pectate lyases). These results will be helpful for further studies aiming at identifying genes and molecular markers to develop chickpea cultivars resilient to water stress.
Project description:This study was aimed to deal with a comparative proteome analysis of the two chickpea genotypes with contrasting response to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS). Proteins were extracted from the root tissues collected from the control and drought stressed plants of both the genotypes. NanoLC-MS/MS analysis of the protein sample was performed using EASY-nLC 1000 system for the separation and identification of peptides/proteins. This study provided a mechanistic insight of drought stress tolerance in chickpea.
Project description:The ability of chickpea to obtain sufficient nitrogen via its symbiotic relationship with Mesorhizobium ciceri is of critical importance in supporting growth and grain production. A number of factors can affect this symbiotic relationship including abiotic conditions, plant genotype, and disruptions to host signalling/perception networks. In order to support improved nodule formation in chickpea, we investigated how plant genotype and soil nutrient availability affect chickpea nodule formation and nitrogen fixation. Further, using transcriptomic profiling, we sought to identify gene expression patterns that characterize highly nodulated genotypes.
Project description:A custom resequencing array for analysis of field isolates of plasmdium falciparum was created. Test of DNA with genotypes known at all loci genotyped by the microarray as well as test of accuracy correlation with amounts of DNA added to each array
Project description:Using microarray technology and a set of chickpea (Cicer arietinum L.) unigenes and grasspea (Lathyrus sativus L.) ESTs, chickpea responses to treatments with the defence signalling compounds salicylic acid (SA), methyl jasmonate (MeJA), and aminocyclopropane carboxylic acid (ACC) were studied in four chickpea genotypes with ranging levels of resistance to ascochyta blight (Ascochyta rabiei (Pass.) L.). The experimental system minimized environmental effects and was conducted in reference design, where samples from untreated controls acted as references against post-treatment samples. Robust data quality was achieved through the use of three biological replicates (including a dye-swap), the inclusion of negative controls, and strict selection criteria for differentially expressed genes including a fold change cut-off determined by self-to-self hybridizations, Students t test and multiple testing correction (P<0.05). Microarray observations were also validated by quantitative RT-PCR. The time-course expression patterns of 715 experimental microarray features resulted in differential expression of 425 genes in at least one condition. The A. rabiei resistant chickpea genotypes showed a more substantial range of defence-related gene induction by all treatments, indicating that they may possess stronger abilities to resist infection. Further, the involvement of SA, MeJA, and ACC signalling was identified for the regulation of some important A. rabiei responsive genes, as well as cross-talk between these pathways. This study also found evidence to suggest the involvement of A. rabiei-specific signalling mechanisms for the induction of several genes that were previously implicated in A. rabiei resistance. Overall, this study characterised the regulatory mechanisms of many chickpea genes that may be important in defence against various pathogens, as well as other cellular functions. Although the size of the microarray was limited, the results provided novel insights to the molecular control of chickpea cellular processes, which may assist the understanding of chickpea defence mechanisms and allow enhanced development of disease resistant cultivars. Keywords: time course defence-signalling teatment analysis
Project description:Bisulphite sequencing of salinity sensitive and salinity tolerant chickpea genotypes during salinity stress response using Illumina platform has been performed. At least 195 million reads in bisulphite sequencing were generated in each sample. Methylated cytosines in each sample were identified for their genomic location and sequence context.
Project description:In this study, to obtain a clear picture of drought mechanism involved in two distinctive chickpea genotype, the aim was to identify the DNA methylation patterns which potentially regulate drought tolerance/sensitivity of these selected genotypes. The leaf tissues from the shoot apical meristem from drought sensitive and drought tolerant genotypes were used for RRBS (Reduced representation bisulphite sequencing) under drought stress. The sequencing data was analysed using Bismark and methylkit to recall the methylation levels in control and samples for both genotypes and identify differentially methylated regions.