Project description:Antibiotic resistance genes (ARGs) and virulence genes (VGs) associated with bacterial pathogens are of great concern in WWTPs, while current knowledge of their profiles and co-occurrence patterns in different time intervals is barely sufficient. Moreover, the impacts of treatment process on ARG/VGs diversity also remain clear. To this end, this study was launched to address the differences of the ARG/VGs diversity between an oxidation ditch (OD) and an membrane bioreactor (MBR) and the co-occurrence patterns in different time intervals using a functional gene array-GeoChip.
Project description:Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of soil organic matter. However, poor understanding of the mechanisms responsible hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically test the link between microbial ecophysiological traits and topsoil carbon content across geographically distributed soils and land use contrasts. We discovered distinct pH-controls on microbial mechanisms of carbon accumulation. Land use intensification in low-pH soils that increased pH above a threshold (~ 6.2) lead to carbon loss through increased decomposition following alleviation of acid-retardation of microbial growth. However, loss of carbon with intensification in near neutral-pH soils was linked to decreased microbial biomass and reduced growth efficiency that was, in turn, related to tradeoffs with stress alleviation and resource acquisition. Thus, less intensive management practices in near neutral-pH soils have more potential for carbon storage through increased microbial growth efficiency; whereas, in acidic soils microbial growth is a bigger constraint on decomposition rates.
Project description:This study examined how transcriptomics tools can be included in a Triad-based soil quality assessment to assess the toxicity of soils from river banks polluted by metals. To that end we measured chemical soil properties and used the standardized ISO guideline for ecotoxicological tests and a newly developed microarray for gene expression in the indicator soil arthropod, Folsomia candida. Microarray analysis revealed that the oxidative stress response pathway was significantly affected in all soils except one. The data indicate that changes in cell redox homeostasis are a significant signature of metal stress. Finally, 32 genes showed significant dose-dependent expression with metal concentrations. They are promising genetic markers providing an early indication of the need for higher tier testing in soil quality. One of the least polluted soils showed toxicity in the bioassay that could be removed by sterilization. The gene expression profile for this soil did not show a metal-related signature, confirming that another factor than metals (most likely of biological origin) caused the toxicity. This study demonstrates the feasibility and advantages of integrating transcriptomics into Triad-based soil quality assessment. Combining molecular and organismal life-history trait’s stress responses helps identifying causes of adverse effect in bioassays. Further validation is needed for verifying the set of genes with dose-dependent expression patterns linked with toxic stress.
Project description:Analysis of microbial community composition in arctic tundra and boreal forest soils using serial analysis of ribosomal sequence tags (SARST). Keywords: other
Project description:Tropical rainforest soil microbial communities from the Amazon Forest, Brazil, analyzing deforestation - Metatranscriptome F II A01 metatranscriptome