Project description:Pseudomonas aeruginosa is one of the main causes of nosocomial infections and is frequently associated with opportunistic infections among hospitalized patients. Kaempferol-3-O-(2',6'-di-O-trans-p-coumaroyl)-β-D glucopyranoside (K F) is an antipseudomonal compound isolated from the leaves of the native medicinal plant Melastoma malabathricum. Herein, an RNA-seq transcriptomic approach was employed to study the effect of K F treatment on P. aeruginosa and to elucidate the molecular mechanisms underlying the response to K F at two time points (6 h and 24 h incubation). Quantitative real-time PCR (qRT-PCR) was performed for four genes (uvrD, sodM, fumC1, and rpsL) to assess the reliability of the RNA-seq results. The RNA-seq transcriptomic analysis revealed that K F increases the expression of genes involved in the electron transport chain (NADH-I), resulting in the induction of ATP synthesis. Furthermore, K F also increased the expression of genes associated with ATP-binding cassette transporters, flagella, type III secretion system proteins, and DNA replication and repair, which may further influence nutrient uptake, motility, and growth. The results also revealed that K F decreased the expression of a broad range of virulence factors associated with LPS biosynthesis, iron homeostasis, cytotoxic pigment pyocyanin production, and motility and adhesion that are representative of an acute P. aeruginosa infection profile. In addition, P. aeruginosa pathways for amino acid synthesis and membrane lipid composition were modified to adapt to K F treatment. Overall, the present research provides a detailed view of P. aeruginosa adaptation and behaviour in response to K F and highlights the possible therapeutic approach of using plants to combat P. aeruginosa infections.
Project description:Natural products use for arthritis treatment is gaining importance in the medical worldt. Various studies reports medical importance of Melastoma malabathricum Linn. (MM) (Melastomataceae), also known as "putki," has a broad range of health benefits, for its free radical scavenging constituents. The current investigation scrutinizes the antioxidant and anti-inflammatory effect of MM against adjuvant-induced arthritis in experimental rats.High-performance thin layer chromatography (HPTLC) was used for estimation of phytochemical-constituents present in the MM extract. Protective effect of MM extract in Wistar rats was estimated using CFA-induced model. The rats were divided into different groups with six rats in each group. All animals received oral administration of MM and indomethacin for 28 days. The body weight and arthritic score were scrutinized at regular intervals. At the end of experimental protocol, the rats were sacrificed, and blood samples were used for antioxidant, hematological parameters, pro-inflammatory and inflammatory mediator, respectively. Histopathological observation was used to evaluate the protective effect of MM extract.Current study confirmed the preventive effect of MM against adjuvant-induced paw edema, paw redness and arthritic progression. MM significantly (P?<?0.001) modulated the oxidative stress parameters as well as hematological parameter induced by CFA. The result also altered the distorted level of proinflammatory mediators and inflammatory mediator, which further reinforce the implication of MM in CFA induced arthritis. Histological analyses of joints of rats showed a reduction in the synovial hyperplasia and mononuclear infiltration in the MM treated group which provides evidence for the antiarthritic effect of MM.From above parameters our study states that the MM is capable of restraining the alteration produced via adjuvant-induced arthritis in aminals. The repressing effect of MM could be attributed, at least in part, to antioxidant, hematological and anti-inflammatory effect. Figure Caption: Melastoma Malabathricum Linn Attenuates Complete Freund's Adjuvant-Induced Chronic Inflammation in Wistar rats by Inflammation Response.