Project description:Germline-encoded pattern recognition receptors (e.g. Toll-like receptors) play key roles in innate immune activation. However, some metazoans, such as C. elegans, do not have canonical mechanisms of pattern recognition, yet they are able to mount anti-pathogen immune defenses. Here, we demonstrate that a nuclear hormone receptor (NHR), a ligand-gated transcription factor, functions in immune activation and pathogen defense. NHRs have expanded dramatically in C. elegans compared to other metazoans. Because NHRs often function redundantly, it has been challenging experimentally to characterize the biology of individual NHRs. Here, we use genetic epistasis experiments, transcriptome profiling analyses and chromatin immunoprecipitation to show NHR-86 is sufficient to activate protective immune defenses against the bacterial pathogen Pseudomonas aeruginosa. Interestingly, NHR-86 drives the transcription of immune effectors whose basal regulation requires the canonical p38 MAPK PMK-1 immune pathway. However, NHR-86 functions independently of PMK-1 and directly induces the transcription of infection response genes in a manner that confers protection from bacterial infection. Importantly, we found that nhr-86 does control immune gene expression and is necessary for host defense against a different pathogen, Enterococcus faecalis. Our findings characterize an ancient role of an NHR in innate immunity, and suggest that the expansion of the NHR protein family in C. elegans has been fueled in part by the need to activate immune defenses in response to pathogen attack.
Project description:Germline-encoded pattern recognition receptors (e.g. Toll-like receptors) play key roles in innate immune activation. However, some metazoans, such as C. elegans, do not have canonical mechanisms of pattern recognition, yet they are able to mount anti-pathogen immune defenses. Here, we demonstrate that a nuclear hormone receptor (NHR), a ligand-gated transcription factor, functions in immune activation and pathogen defense. NHRs have expanded dramatically in C. elegans compared to other metazoans. Because NHRs often function redundantly, it has been challenging experimentally to characterize the biology of individual NHRs. Here, we use genetic epistasis experiments, transcriptome profiling analyses and chromatin immunoprecipitation to show NHR-86 is sufficient to activate protective immune defenses against the bacterial pathogen Pseudomonas aeruginosa. Interestingly, NHR-86 drives the transcription of immune effectors whose basal regulation requires the canonical p38 MAPK PMK-1 immune pathway. However, NHR-86 functions independently of PMK-1 and directly induces the transcription of infection response genes in a manner that confers protection from bacterial infection. Importantly, we found that nhr-86 does control immune gene expression and is necessary for host defense against a different pathogen, Enterococcus faecalis. Our findings characterize an ancient role of an NHR in innate immunity, and suggest that the expansion of the NHR protein family in C. elegans has been fueled in part by the need to activate immune defenses in response to pathogen attack.
Project description:Pattern recognition of bacterial products by host receptors is essential for pathogen sensing in many metazoans. Caenorhabditis elegans, however, do not utilize canonical pattern recognition receptors to activate innate immunity toward bacterial pathogens. Whether other mechanisms evolved in nematodes to directly sense pathogens is not known. Here, we characterize the first bacterial pattern recognition receptor and its natural ligand in C. elegans. We show that the C. elegans nuclear hormone receptor NHR-86/HNF4 senses phenazine-1-carboxamide (PCN), a metabolite produced by pathogenic strains of Pseudomonas aeruginosa, to activate protective anti-pathogen defenses in the intestine. PCN binds to the ligand binding domain of NHR-86/HNF4, a ligand-gated transcription factor, which engages a transcriptional program in intestinal epithelial cells that promotes metabolism of toxic phenazines to provide protection against P. aeruginosa. These data de-orphan a nuclear hormone receptor and demonstrate that sensing a metabolite signal of bacterial virulence allows nematodes to detect pathogens in its environment that are poised to cause disease.
Project description:Nuclear hormone receptors (NHRs) are ligand-gated transcription factors that control adaptive host responses following recognition of specific endogenous or exogenous ligands. Although NHRs have expanded dramatically in C. elegans compared to other metazoans, the biological function of only a few of these genes has been characterized in detail. Here, we demonstrate that an NHR can activate an anti-pathogen transcriptional program. Using genetic epistasis experiments, transcriptome profiling analyses and chromatin immunoprecipitation-sequencing, we show that, in the presence of an immunostimulatory small molecule, NHR-86 binds to the promoters of immune effectors to activate their transcription. NHR-86 is not required for resistance to the bacterial pathogen Pseudomonas aeruginosa at baseline, but activation of NHR-86 by this compound drives a transcriptional program that provides protection against this pathogen. Interestingly, NHR-86 targets immune effectors whose basal regulation requires the canonical p38 MAPK PMK-1 immune pathway. However, NHR-86 functions independently of PMK-1 and modulates the transcription of these infection response genes directly. These findings characterize a new transcriptional regulator in C. elegans that can induce a protective host response towards a bacterial pathogen.
Project description:The response to insufficient oxygen, termed hypoxia, is orchestrated by the conserved master regulator Hypoxia-Inducible Factor-1 (HIF-1), which is hyperactive in many cancers. Here, we describe a HIF-1 independent hypoxia response pathway controlled by Caenorhabditis elegans Nuclear Hormone Receptor NHR-49, an orthologue of mammalian lipid metabolism regulator Peroxisome Proliferator-Activated Receptor alpha (PPARα). nhr-49 is required for worm survival in hypoxia and is synthetically lethal with hif-1 in this context, demonstrating independent activity. RNA-seq data show that nhr-49 regulates a set of hif-1 independent hypoxia responsive genes, including autophagy genes that promote hypoxia survival. We further identified the Nuclear Hormone Receptor nhr-67 as a negative regulator and the Homeodomain-interacting Protein Kinase hpk-1 as a positive regulator in the NHR-49 pathway. Together, our experiments describe an essential hypoxia response pathway controlled by nhr-49 that includes new upstream and downstream components and is as important as hif-1 dependent hypoxia adaptation.