Project description:Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and are implicated in the zoonotic transmission of leprosy in the United States. In Mexico, the existence of such a reservoir remains to be characterized. We describe a wild armadillo infected by M. leprae in the state of Nuevo León, Mexico.
Project description:The auditory brainstem response (ABR) to tone burst stimuli of thirteen frequencies ranging from 0.5 to 48 kHz was recorded in the nine-banded armadillo (Dasypus novemcinctus), the only extant member of the placental mammal superorder Xenarthra in North America. The armadillo ABR consisted of five main peaks that were visible within the first 10 ms when stimuli were presented at high intensities. The latency of peak I of the armadillo ABR increased as stimulus intensity decreased by an average of 20 μs/dB. Estimated frequency-specific thresholds identified by the ABR were used to construct an estimate of the armadillo audiogram describing the mean thresholds of the eight animals tested. The majority of animals tested (six out of eight) exhibited clear responses to stimuli from 0.5 to 38 kHz, and two animals exhibited responses to stimuli of 48 kHz. Across all cases, the lowest thresholds were observed for frequencies from 8 to 12 kHz. Overall, we observed that the armadillo estimated audiogram bears a similar pattern as those observed using ABR in members of other mammalian clades, including marsupials and later-derived placental mammals.
Project description:Analysis of ontogenetic changes in long bone microstructure aid in vertebrate life history reconstructions. Specifically, osteohistological examination of common fauna can be used to infer growth strategies of biologically uncommon, threatened, or extinct vertebrates. Although nine-banded armadillo biology has been studied extensively, work on growth history is limited. Here we describe long bone microstructure in tibiae and femora of a limited ontogenetic series of nine- banded armadillos (Dasypus novemcinctus) to elucidate patterns of bone growth. The cortex of the smallest individual is composed of compacted coarse cancellous bone (CCCB) and woven tissue. Extensive cortical drift is driven by periosteal erosion and further compaction of trabeculae resulting in an increase in the amount of CCCB. The cortex of the largest specimens is primarily CCCB with thickened endosteal bone and thin outer cortices of lamellar and parallel-fibered tissue. The outer cortices of the largest individuals are interpreted as an external fundamental system (EFS) indicating a cessation of appositional bone growth corresponding to skeletal maturity (i.e. asymptotic or adult size). The EFS forms in femora prior to tibiae, indicating femoral growth rates begin decreasing earlier than tibial in D. novemcinctus. Growth trends in common fauna like the nine-banded armadillo can be used as a foundation for understanding life histories of related, but uncommon or extinct, species of cingulates.