Project description:Library preparation for whole genome bisulphite sequencing (WGBS) is challenging due to side effects of the bisulphite treatment, which leads to extensive DNA damage. Recently, a new generation of methods for bisulphite sequencing library preparation have been devised. They are based on initial bisulphite treatment of the DNA, followed by adaptor tagging of single stranded DNA fragments, and enable WGBS using low quantities of input DNA. In this study, we present a novel approach for quick and cost effective WGBS library preparation that is based on splinted adaptor tagging (SPLAT) of bisulphite-converted single-stranded DNA. Moreover, we validate SPLAT against three commercially available WGBS library preparation techniques, two of which are based on bisulphite treatment prior to adaptor tagging and one is a conventional WGBS method.
2016-10-27 | GSE89213 | GEO
Project description:DNA metabarcoding for assessing chironomid diversity under Bti influence
Project description:We evaluated the effect of the small RNA library preparation method on 5' tRNA-halves and miRNA abundance in libraries prepared from serum RNA using three commercially available small RNA library preparation kits (TruSeq small RNA library preparation kit v2 (Illumina), TailorMix miRNA sample preparation kit v2 (Seqmatic) and the NEBNext Multiplex Small RNA library prep kit (New England Biolabs)). RNA isolated from 100 µl of serum collected from healthy mice was used as input for the preparation of a small RNA library in duplicate and libraries were single end sequenced.
2017-02-22 | GSE88914 | GEO
Project description:Comparison of DNA library preparation kits
Project description:Despite evolving stem cell and organoid application of next-generation sequencing (NGS) at single cell level, current techniques in NGS library preparation are restrictive as individual samples within a single library are indistinguishable, necessitating the laborious and costly preparation of distinct libraries for each sample. To combat this challenge, we report the development of a novel poly(ß-amino) ester labeling system synthesized with inexpensive, common reagents, termed POLYseq, capable of efficiently delivering fluorescent molecules or sample-distinguishing DNA barcodes through non-covalent binding enabling rapid creation of custom libraries.
Project description:A SWATH-based worflow has been developed for C. elegans proteome profiling, including sample preparation, SWATH spectral library generation and downstream data treatment. The influence of mrps-5 RNAi treatment on C. elegans total proteome were studied.
Project description:We optimzed ATAC-seq library preparation for use with Drosophila melanogaster. The protocol addresses factors specific to fruit flies, such as the insect exoskeleton and smaller genome size. The optimized protocol provides guidelines for sample input, nuclei isolation, and enzymatic reaction times. The data included here were generated using our optimized library preparation workflow.
Project description:Regulatory transcription factors control many important biological processes including cellular differentiation, responses to environmental perturbations and stresses, and host-pathogen interactions. Determining the genome-wide binding of regulatory transcription factors to DNA is essential to understanding the function of transcription factors in these often complex biological processes. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) is a modern method for genome-wide mapping of in vivo protein-DNA binding interactions that is an attractive alternative to the traditional and widely used chromatin immunoprecipitation followed by sequencing (ChIP-seq) method. CUT&RUN is amenable to a higher throughput experimental setup and has a substantially higher dynamic range with lower per-sample sequencing costs compared to ChIP-seq. Here, we describe a comprehensive CUT&RUN protocol and accompanying data analysis workflow that is tailored for genome-wide analysis of transcription factor-DNA binding interactions in the human fungal pathogen Candida albicans. This detailed protocol describes all necessary experimental procedures, from epitope tagging of transcription factor coding genes, to library preparation for sequencing; additionally, it includes our customized computational workflow for CUT&RUN data analysis.