Project description:The yeast Pichia caribbica shown the capability to degrade patulin by the intracellular enzymes. However, the enzymes which risponsible for the degradation process was unkonown. Transcriptome change in response to mycotoxin patulin was analyzed. The molecular mechanism of Pichia caribbica withstand patulin was revealed.
Project description:Comparison of transcription profile of Pichia pastoris cells grown on Glucose medium with Pichia pastoris cells grown on Methanol/Glycerol medium, the fermentations were done in a chemostat.
Project description:Comparison of transcription profile of Pichia pastoris cells grown on Glucose medium with Pichia pastoris cells grown on Methanol/Glycerol medium, the fermentations were done in a chemostat. 2 color experiment in reference design. Pichia pastoris reference mix [mixed pool of Pichia pastoris cells sampled from various conditions including cells grown on glycerine, glucose and methanol, on full andminimal medium, in stationary and exponential growth phase, and in different stress states]
Project description:Over the past three decades, due to the universal application of Pichia yeast in the fermentation industry as well as the establishment of Pichia pastoris fermentation process for more than 30 years, the technology of the whole process has become very mature and has now reached a stagnated period of growth. However, studies and research conducted on the genomics of the classic fermentation process and the uncovering of the biological phenomena in the fermentation process from the point of view of high-throughput gene or protein is still in its early stages, and there is still insufficient data within this field. First, in collaboration with Agilent Company, we designed and prepared an expression microarray that could be used for the detection of Pichia pastoris transcriptomics. The transcriptomic changes in the five key technology steps (time points), during the fermentation process of Pichia pastoris would then be detected with the aid of an expression microarray. The five key steps of technology described above formed two important biological processes, namely, the limiting carbon source replacement and secondly, the fermentative production of exogenous proteins. The biological phenomena involved in these two processes were displayed and analyzed at the transcriptional level. In addition to this, with regard to the most important function in the fermentation process of Pichia pastoris, oxid-reduction, the metabolic drift process was analyzed and the important genes that might dominate the changes in the metabolic flux were discovered creatively by using the function tree method in this paper. This study was undertaken from the point of view of the transcriptome and the biological phenomena in the fermemntation process of Pichia pastoris. Both of which, were thoroughly explained during this study. The hope is for many more researchers to optimize the strain fermentation process, to produce proteins at the genetic level, as well as providing and obtaining new perspectives and detailed scientific data for the continued development within this field.
Project description:This SuperSeries is composed of the following subset Series: GSE24853: Expression analysis of Spathaspora passalidarum NRRL Y-27907 grown in glucose or xylose GSE24854: Expression analysis of Pichia stipitis CBS 6054 grown in glucose or xylose GSE24855: Expression analysis of Lodderomyces elongisporus NRRL YB-4239 grown in glucose or xylose GSE24856: Expression analysis of Candida tenuis NRRL Y-1498 grown in glucose or xylose GSE24857: Expression analysis of Candida albicans WO-1 grown in glucose or xylose Refer to individual Series