Project description:The anterior segment of the eye consists of the cornea, iris, ciliary body, crystalline lens and aqueous humor outflow pathways. Together, these tissues are essential for the proper functioning of the eye. Disorders of vision have been ascribed to defects in all of them; some, including glaucoma and cataract, are among the most prevalent causes of blindness. To characterize the cell types that comprise these tissues, we generated an anterior segment cell atlas of the human eye using high throughput single-nucleus RNA sequencing (snRNAseq). We profiled 191,992 single nuclei from non-diseased anterior segment tissues from 6 human donors, identifying >60 cell types. Many are discrete, whereas others in lens and cornea form continua, corresponding to known developmental transitions that persist in adulthood. Having profiled each tissue separately, we performed an integrated analysis of the entire anterior segment revealing that some cell types are unique to single structure whereas others are shared across tissues. This integrated cell atlas was then used to investigate cell type-specific expression patterns of more than >900 human ocular disease genes identified either through Mendelian inheritance patterns or genome-wide association studies (GWAS).
Project description:We applied a new weighted pairwise shared genomic segment (pSGS) analysis for susceptibility gene localization to high-density genomewide SNP data in three extended high-risk breast cancer pedigrees.Using this method, four genomewide suggestive regions were identified on chromosomes 2, 4, 7 and 8, and a borderline suggestive region on chromosome 14. Seven additional regions with at least nominal evidence were observed. Of particular note among these total twelve regions were three regions that were identified in two pedigrees each; chromosomes 4, 7 and 14. Follow-up two-pedigree pSGS analyses further indicated excessive genomic sharing across the pedigrees in all three regions, suggesting that the underlying susceptibility alleles in those regions may be shared in common. In general, the pSGS regions identified were quite large (average 32.2 Mb), however, the range was wide (0.3 - 88.2 Mb). Several of the regions identified overlapped with loci and genes that have been previously implicated in breast cancer risk, including NBS1, BRCA1 and RAD51L1.Our analyses have provided several loci of interest to pursue in these high-risk pedigrees and illustrate the utility of the weighted pSGS method and extended pedigrees for gene mapping in complex diseases. A focused sequencing effort across these loci in the sharing individuals is the natural next step to further map the critical underlying susceptibility variants in these regions.
Project description:Breast cancer was one of the first cancer types where molecular subtyping led to explanation of interpersonal heterogeneity and resulted in improvement of treatment regimen. Several multigene classifiers have been developed and in particular those defining molecular signatures of early breast cancers possess significant prognostic information. Hence since 2014, molecular subtyping of primary breast cancers was implemented as a part of routine diagnostics with direct impact of therapy assignment. In this study, we evaluate direct and potential benefits of molecular subtyping in low-risk breast cancers as well as present the advantages of a robust molecular signature in regard to patient work-up among high-risk breast cancers.
Project description:Purpose:Triple negative breast cancer (TNBC) commonly metastasizes to the brain and predicts poor prognosis with limited therapeutic options. TNBC frequently harbors BRCA mutations translating to platinum sensitivity; platinum response may be augmented by additional suppression of DNA repair mechanisms through poly(ADP-ribose)polymerase (PARP) inhibition. We evaluated brain penetrance and efficacy of Carboplatin +/- the PARP inhibitor ABT888, and investigated gene expression changes in murine intracranial (IC) TNBC models stratified by BRCA and molecular subtype status. Experimental design:Athymic mice were inoculated intra-cerebrally with BRCA-mutant: SUM149 (basal), MDA-MB-436 (claudin-low), or BRCA-wild-type: MDA-MB-468 (basal), MDA-MB-231BR (claudin-low) TNBC cells and treated with PBS control (IP, weekly), Carboplatin (50mg/kg/week, IP), ABT888 (25mg/kg/day, OG), or their combination. DNA-damage (?-H2AX) and apoptosis (cleaved-Caspase-3(cC3)) were assessed via IHC of IC tumors. Gene expression of BRCA-mutant IC tumors was measured. Results: Carboplatin+/-ABT888 significantly improved survival in BRCA-mutant IC models compared to control, but did not improve survival in BRCA-wild-type IC models. Carboplatin+ABT888 revealed a modest survival advantage versus Carboplatin in BRCA-mutant models. ABT888 yielded a marginal survival benefit in the MDA-MB-436 but not in the SUM149 model. BRCA-mutant SUM149 expression of ?-H2AX and cC3 proteins was elevated in all treatment groups compared to Control, while BRCA-wild-type MDA-MB-468 cC3 expression did not increase with treatment. Carboplatin treatment induced common gene expression changes in BRCA-mutant models.Conclusions: Carboplatin+/-ABT888 improves survival in BRCA-mutant IC TNBC models with corresponding DNA damage and gene expression changes. Combination therapy represents a promising treatment strategy for patients with TNBC brain metastases warranting further clinical investigation. reference x sample
Project description:Purpose:Triple negative breast cancer (TNBC) commonly metastasizes to the brain and predicts poor prognosis with limited therapeutic options. TNBC frequently harbors BRCA mutations translating to platinum sensitivity; platinum response may be augmented by additional suppression of DNA repair mechanisms through poly(ADP-ribose)polymerase (PARP) inhibition. We evaluated brain penetrance and efficacy of Carboplatin +/- the PARP inhibitor ABT888, and investigated gene expression changes in murine intracranial (IC) TNBC models stratified by BRCA and molecular subtype status. Experimental design:Athymic mice were inoculated intra-cerebrally with BRCA-mutant: SUM149 (basal), MDA-MB-436 (claudin-low), or BRCA-wild-type: MDA-MB-468 (basal), MDA-MB-231BR (claudin-low) TNBC cells and treated with PBS control (IP, weekly), Carboplatin (50mg/kg/week, IP), ABT888 (25mg/kg/day, OG), or their combination. DNA-damage (?-H2AX) and apoptosis (cleaved-Caspase-3(cC3)) were assessed via IHC of IC tumors. Gene expression of BRCA-mutant IC tumors was measured. Results: Carboplatin+/-ABT888 significantly improved survival in BRCA-mutant IC models compared to control, but did not improve survival in BRCA-wild-type IC models. Carboplatin+ABT888 revealed a modest survival advantage versus Carboplatin in BRCA-mutant models. ABT888 yielded a marginal survival benefit in the MDA-MB-436 but not in the SUM149 model. BRCA-mutant SUM149 expression of ?-H2AX and cC3 proteins was elevated in all treatment groups compared to Control, while BRCA-wild-type MDA-MB-468 cC3 expression did not increase with treatment. Carboplatin treatment induced common gene expression changes in BRCA-mutant models.Conclusions: Carboplatin+/-ABT888 improves survival in BRCA-mutant IC TNBC models with corresponding DNA damage and gene expression changes. Combination therapy represents a promising treatment strategy for patients with TNBC brain metastases warranting further clinical investigation.
Project description:We used microarrays to examine gene expression levels from members of 45 CEPH-Utah pedigrees. Keywords: array-based gene expression