Project description:Although the biodegradation of biodegradable plastics in soil and compost is well-studied, there is little knowledge on the metabolic mechanisms of synthetic polymers degradation by marine microorganisms. Here, we present a multiomics study to elucidate the biodegradation mechanism of a commercial aromatic-aliphatic copolyester film by a marine microbial enrichment culture. The plastic film and each monomer can be used as sole carbon source. Our analysis showed that the consortium synergistically degrades the polymer, different degradation steps being performed by different members of the community. Analysis of gene expression and translation profiles revealed that the relevant degradation processes in the marine consortium are closely related to poly(ethylene terephthalate) biodegradation from terrestrial microbes. Although there are multiple genes and organisms with the potential to perform a degradation step, only a few of these are active during biodegradation. Our results elucidate the potential of marine microorganisms to mineralize biodegradable plastic polymers and describe the mechanisms of labor division within the community to get maximum energetic yield from a complex synthetic substrate.
2020-09-25 | PXD018391 | Pride
Project description:TBBPA-degrading marine bacterial consortium with beef extract and peptone
Project description:To determine the optimal RNA-Seq approach for animal host-bacterial symbiont analysis, we compared transcriptome bias, depth and coverage achieved by two different mRNA capture and sequencing strategies applied to the marine demosponge Amphimedon queenslandica holobiont, for which genomes of the animal host and three most abundant bacterial symbionts are available.