Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin.
Project description:Effect of the presence of Lactococcus lactis on Staphylococcus aureus transcriptome in cheese matrix. S. aureus was co-cultured with L. lactis LD61 in cheese matrix during 7 days. RNA samples were extracted at different time points (6 h, 8 h, 10 h, 24 h and 7 days) in order to monitor the dynamic response of S. aureus MW2 in cheese matrix in presence of L. lactis
Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin.
Project description:RNA-seq was used in combination with various analytical chemistry approaches to identify the chemical and genetic basis of pigment production of the bacterium Glutamicibacter arilaitensis when growing on cheese. This bacterium commonly found in cheese rinds where it co-occurs with Penicillium species and other molds. Pinkish-red pigments are produced by the bacterium in response to growth with Penicillium. Both chemical analyses and RNA-seq point to coproporphyrin III as the major metabolite leading to pigment formation.
Project description:This study aims to explore the relationship between the respiratory virome, specifically bacteriophages, HERV and the host response in ARDS and to assess their value in predicting the prognosis of ARDS.
Project description:Aside from their amino acid content, dairy proteins are valuable for their ability to carry encrypted bioactive peptides whose activities are latent until released by digestive enzymes or endogenous enzymes within the food. Peptides can possess a wide variety of functionalities, such as antibacterial, antihypertensive, and antioxidative properties, as demonstrated by in vitro and in vivo studies. This phenomenon raises the question as to what impact various traditional cheese-making processes have on the formation of bioactive peptides in the resulting products. In this study, we have profiled the naturally-occurring peptides in two hard and two soft traditional cheeses and have identified their known bioactive sequences. While past studies have typically identified fewer than 100 peptide sequences in a single cheese, we have used modern instrumentation to identify between 2900 and 4700 sequences per cheese, an increase by a factor of about 50. We demonstrated substantial variations in proteolysis and peptide formation between the interior and rind of each cheese, which we ascribed to the differences in microbial composition between these regions. We identified a total of 111 bioactive sequences among the four cheeses, with the greatest number of sequences, 89, originating from Mimolette. The most common bioactivities identified were antimicrobial and inhibition of the angiotensin-converting enzyme. This work revealed that cheese proteolysis and the resulting peptidomes are more complex than originally thought in terms of the number of peptides released, variation in peptidome across sites within a single cheese, and variation in bioactive peptides among cheese-making techniques.
Project description:Mucor species belongs to the Mucorales order within the phylum Mucoromycota, an early diverging fungal lineage. The purpose of this study was to investigate at the transcriptome scale the similarities and differences that could be linked to different lifestyles. Five strains pertaining to five species were studied: M. fuscus and M. lanceolatus, two species used in cheese ripening, M. racemosus, a recurrent cheese spoiler sometimes described as an opportunistic pathogen, M. circinelloides, often described as an opportunistic pathogen and M. endophyticus, a plant endophyte species.