Project description:D-galactose orally intake ameliorate DNCB-induced atopic dermatitis by modulating microbiota composition and quorum sensing. The increased abundance of bacteroidetes and decreased abundance of firmicutes was confirmed. By D-galactose treatment, Bacteroides population was increased and prevotella, ruminococcus was decreased which is related to atopic dermatitis.
Project description:Leaf-cutting ants of the genera Acromyrmex and Atta live in mutualistic symbiosis with a basidiomycete fungus (Leucocoprinus gongylophorus), which they cultivate as fungal gardens in underground nest chambers. The ants provide the fungus with a growth substrate consisting of freshly cut leaf fragments. After new leaf fragments are brought into the nest, the ants chew them into smaller pieces and apply droplets of fecal fluid to the leaf pulp before depositing this mixed substrate in the fungus garden and inoculating it with small tufts of mycelium from older parts of the garden. Previous work has shown that the fecal fluid contains a range of digestive enzymes including proteases, amylases, chitinases, cellulases, pectinases, hemicellulases and laccases, and that most of these enzymes are produced by the fungal symbiont in specialized structures called gongylidia that the ants eat. After ingestion, the enzymes apparently pass unharmed through the alimentary channel of the ants and end up in the fecal fluid. Most likely this complex system is an adaptation of the ant-fungus symbiosis to a herbivorous lifestyle, as the ancient ancestors of the ants and the fungus lived as hunter-gatherers and saprotrophs, respectively. The promise of fecal fluid for getting insight into the molecular adaptations that enables the ant-fungus holosymbiont to live as a herbivore, led us to investigate the fecal fluid proteome using LC-MS/MS in order to get a more comprehensive picture of the repertoire of proteins present.