Project description:This clinical trial studies the effectiveness of a web-based cancer education tool called Helping Oncology Patients Explore Genomics (HOPE-Genomics) in improving patient knowledge of personal genomic testing results and cancer and genomics in general. HOPE-Genomics is a web-based education tool that teaches cancer/leukemia patients, and patients who may be at high-risk for developing cancer, about genomic testing and provide patients with information about their own genomic test results. The HOPE-Genomics tool may improve patient’s genomic knowledge and quality of patient-centered care. In addition, it may also improve education and care quality for future patients.
Project description:Chronic pain is a global public health problem, but the underlying molecular mechanisms are not fully understood. Here we examine genome-wide DNA methylation, first in 50 identical twins discordant for heat pain sensitivity and then in 50 further unrelated individuals. Whole blood DNA methylation was characterized at 5.2 million loci by MeDIP-sequencing and assessed longitudinally to identify differentially methylated regions associated with high or low pain-sensitivity (pain-DMRs). Nine meta-analysis pain-DMRs show robust evidence for association (false discovery rate 5%) with the strongest signal in the pain gene TRPA1 (P=1.2M-CM-^W10-13). Several pain-DMRs show longitudinal stability consistent with susceptibility effects, have similar methylation levels in brain, and altered expression in skin. Our approach identifies epigenetic changes in both novel and established candidate genes that provide molecular insights into pain and may generalize to other complex traits. MeDIP-sequencing in 100 individulas using a 2 stage design: paired-end MeDIP-seq in 50 monozygotic twins and single-end MeDIP-seq in 50 unrelated individuals.
Project description:We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia a prominent symptom of chronic pain. Expression genetics identifies a role for the Chrna6 (alpha 6-nicotinic receptor) gene in pain in mice and humans. Dorsal root ganglion tissue across multiple inbred mouse strains, both male and female
Project description:Pain experienced within a social context impacts infant neurobehavioral responses and initiates an altered developmental trajectory of pain and affect processing that diverges from experiencing pain alone. We used microarrays to detail the gene expression following pain with and without the mother at different preweaning ages
Project description:We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia a prominent symptom of chronic pain. Expression genetics identifies a role for the Chrna6 (alpha 6-nicotinic receptor) gene in pain in mice and humans.
Project description:Six different mouse pain models were studied: (1) tumour-injection model for bone cancer pain; (2) partial sciatic nerve ligation (PSL) for neuropathic pain; (3) mechanical joint loading for osteoarthritis pain; (4) oxaliplatin-induced painful neuropathy for chemotherapy-induced pain; (5) hyperalgesic priming model for chronic muscle pain; and (6) complete Freund’s adjuvant (CFA)-injection for inflammatory pain. Transcriptomic microarray analyses were performed using RNA isolated from dorsal root ganglia.
Project description:Here we show that ?-catenin mediates pro-resilient and anxiolytic effects in mice in the nucleus accumbens (NAc), a key brain reward region, an effect that is mediated by ?-catenin signaling in D2-type medium spiny neurons (MSNs) specifically. Conversely, blocking ?-catenin function in NAc promotes susceptibility to chronic stress, and we show evidence of robust suppression of ?-catenin transcriptional activity in the NAc both of depressed humans examined postmortem as well as of mice that display a susceptible phenotype after chronic stress, with a converse upregulation in mice that are stress resilient. Using ChIP-seq, we demonstrate a global, genome-wide enrichment of ?-catenin in the NAc of resilient mice, and specifically identify Dicer1—important in small RNA (e.g., microRNA [miRNA]) biogenesis—as a critical ?-catenin target gene involved in mediating a resilient phenotype. Small RNA-seq after excising ?-catenin from the NAc in the context of chronic stress reveals dynamic ?-catenin-dependent miRNA regulation associated with resilience. Control: 2 samples, Resilient: 2 samples, Susceptible: 2 samples; DNA input: 1 sample.
Project description:Fibromyalgia (FM) is a chronic pain condition and consists of widespread pain with similarities to neuropathic pain in clinical findings, pathophysiology, and neuropharmacology. Its mechanisms are poorly understood and a lack of effective biomarkers for diagnosis and onset prediction. This study aimed to identify the metabolites to characterize pain and sngception (Sng) in FM.
Project description:Oral cancer patients experience pain at the site of the primary cancer. Patients with metastatic oral cancers report greater pain. Lack of pain identifies patients at low risk of metastasis with sensitivity = 0.94 and negative predictive value = 0.89. In the same cohort, sensitivity and negative predictive value of depth of invasion, currently the best predictor, were 0.95 and 0.92, respectively. Cancer pain is attributed to cancer-derived mediators that sensitize neurons and is associated with increased neuronal density. We hypothesized that pain mediators would be overexpressed in metastatic cancers from patients reporting high pain. We identified 40 genes overexpressed in metastatic cancers from patients reporting high pain (n=5) compared to N0 cancers (n=10) and normal tissue (n=5). The genes are enriched for functions in extracellular matrix organization and angiogenesis. They have oncogenic and neuronal functions and are reported in exosomes. Hierarchical clustering according to expression of neurotrophic and axon guidance genes also separated cancers according to pain and nodal status. Depletion of exosomes from cancer cell line supernatant reduced nociceptive behavior in a paw withdrawal assay, supporting a role for exosomes in cancer pain. The identified genes and exosomes are potential therapeutic targets for stopping cancer and attenuating pain.