Project description:The study confirmed a batch of goat skin and hair follicles miRNA, by high-throughput sequencing methods.316 sequences miRNAs were obtained by the means of analysis and we confirmed the authenticity of 68 known miRNAs and discovered 248 novel miRNAs, as well as 22 miRNAs that havenM-bM-^@M-^Yt been reported before. Through the miRNAs family analysis, we found the co-expressed miRNAs in goat and sheep located in the same region of chromosome, which may play an essential role in skin and follicle development. In addition, the prediction of novel target miRNAs followed by the analysis of target gene pathways indicated that MAPK pathway may have an important effect to the fast growth of skin follicle cell. We sequenced a mixed sample which contains three goat skin in anagen of cashmere
Project description:The study confirmed a batch of goat skin and hair follicles miRNA, by high-throughput sequencing methods.316 sequences miRNAs were obtained by the means of analysis and we confirmed the authenticity of 68 known miRNAs and discovered 248 novel miRNAs, as well as 22 miRNAs that haven’t been reported before. Through the miRNAs family analysis, we found the co-expressed miRNAs in goat and sheep located in the same region of chromosome, which may play an essential role in skin and follicle development. In addition, the prediction of novel target miRNAs followed by the analysis of target gene pathways indicated that MAPK pathway may have an important effect to the fast growth of skin follicle cell.
Project description:In this study, the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen and telogen) in a fiber-producing goat breed. In total, 63,109,004 raw reads were obtained by Solexa sequencing and 61,125,752 clean reads remained for the small RNA digitalization analysis. This resulted in the identification of 399 conserved miRNAs; among these, 326 miRNAs were expressed in all three follicular cycling stages, whereas 3, 12 and 11 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. We also identified 172 potential novel miRNAs by Mireap, 36 miRNAs were expressed in all three cycling stages, whereas 23, 29 and 44 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. Gene Ontology and KEGG pathway analyses indicated that five major biological pathways (Metabolic pathways, Pathways in cancer, MAPK signalling pathway, Endocytosis and Focal adhesion) accounting for 23.08% of target genes among 278 biological functions, indicating that these pathways are likely to play significant roles during hair cycling. the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen and telogen) in a fiber-producing goat breed
Project description:In this study, the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen and telogen) in a fiber-producing goat breed. In total, 63,109,004 raw reads were obtained by Solexa sequencing and 61,125,752 clean reads remained for the small RNA digitalization analysis. This resulted in the identification of 399 conserved miRNAs; among these, 326 miRNAs were expressed in all three follicular cycling stages, whereas 3, 12 and 11 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. We also identified 172 potential novel miRNAs by Mireap, 36 miRNAs were expressed in all three cycling stages, whereas 23, 29 and 44 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. Gene Ontology and KEGG pathway analyses indicated that five major biological pathways (Metabolic pathways, Pathways in cancer, MAPK signalling pathway, Endocytosis and Focal adhesion) accounting for 23.08% of target genes among 278 biological functions, indicating that these pathways are likely to play significant roles during hair cycling.
Project description:Background The goat (Capra hircus) represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat), with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs): on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome). These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P<0.0001) suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Genes with environmental functions were over-represented in goat CNVRs as reported in other mammals. Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the functional relevance of these CNVs and their effects on behavior, production, and disease resistance traits in goats.