Project description:The immune response associated with mastitis caused by Mycoplasma bovis is a very complicated biological process in several type of cells, including immune cells, mammary epithelial cells and, endothelial cells. Thus, revealing of the microRNAs in the Mycoplasma bovis infected mammary gland tissues is particularly important for the immune response mechanism to Mycoplasma bovis. Firstly, mammary gland tissue samples were collected from Holstein cows and screened for Mycoplasma bovis. Then, total RNA was isolated from mycoplasma bovis infected tissues and RNA sequencing was performed. After bioinformatics analysis, GO and KEGG analysis of target genes of identified microRNAs were conducted. Our results revaled that 24 of the known microRNAs were expressed differently and 13 of the novel microRNAs were expressed differently in Mycoplasma bovis positive tissues. The target genes of these microRNAs were found to be associated with especially inflammation pathways. In conclusion, this study demonstrated that identified miRNAs may be involved in the signaling pathways during mastitis case caused by Mycoplasma bovis.
Project description:We have engineered synthetic gene switches to control and limit Mycoplasma growth for biosafety containment applications. Mycoplasmas have high mutation rates and, the accumulation of mutations that inactivate the circuit is expected. However, the question is how resilient is the kill-switch to mutation and whether it is more sensitive to the accumulation of mutations. Therefore, we did the whole-genome sequencing of the three Mycoplasma biosafety strains, designed in our study, at different passages (p2, p3 and p15) or after IPTG-treatment at passage 3 (p3IPTG)
Project description:This dataset was used to assess the random insertion by tranposases of lox sites in Mycoplasma pneumoniae. This is part of the protocol LoxTnSeq, a new methodology to generate and catalogue libraries of genome reduction mutants. LoxTnSeq combines random integration of Lox sites by transposon mutagenesis, and the generation of mutants via cre recombinase, catalogued via deep-sequencing. When LoxTnSeq was applied to the naturally genome reduced bacterium Mycoplasma pneumoniae, we obtained a mutant pool containing 285 unique deletions. These deletions spanned from >50 bp to 28 Kb, which represent 21% of the total genome. LoxTnSeq also highlighted large regions of non-essential genes that could be removed simultaneously, and other similar regions that could not, providing a guide for future genome reductions.
Project description:Mycoplasma gallisepticum transcriptome comparison between in vitro grown cultures of strains Rlow and F utilizing oligo DNA microarrays.
Project description:Mycoplasma gallisepticum is a convenient model object for studying the regulation of transcription because it has a reduced genome, lack of cell wall and many metabolic pathways, and also easy to culture and non-pathogenic to humans. For rapid investigation of gene expression we developed microarray design including 3 366 probes for 678 genes. They included 665 protein coding sequences and 13 antisense RNAs from 816 genes and 17 ncRNAs present in Mycoplasma gallisepticum. This work was carried out transcriptomic profiling for different types of effects on the expression of genes of Mycoplasma gallisepticum: 1) genetic knock-out mutants; 2) cell culture exposed to sublethal concentrations of antibiotics; and 3) well-characterized heat stress effect. The study was performed on Agilent one-color microarray with custom design and random-T7 polymerase primer for cDNA synthesis. Using set of different probes for each gene or ncRNA allows to increase accuracy of gene expression quality.
Project description:Analysis of H292 cells infected with Mycoplasma hyorhinis. Mycoplasma infection reduces the cytotoxic effect of Nutlin3 on H292 cells. The results provide insight into molecular mechanisms underlying the response of H292 cells to Nutlin3.