Project description:The pathogenesis of bovine besnoitiosis and the molecular bases that govern disease progression remain to be elucidated. Thus, we have employed an in vitro model of infection based on primary bovine aortic endothelial cells (BAEC), a target cell culture of acute infection. Next, host-parasite interactions were investigated by RNA-Seq at two post-infection (pi) time points: 12 hpi, when tachyzoites have already invaded host cells, and 32 hpi, when Besnoitia besnoiti tachyzoites have replicated for at least two generations. Additionally, the gene expression profile of B. besnoiti tachyzoites was also studied at both pi time points.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Besnoitia besnoiti is the causative agent of bovine besnoitiosis. B. besnoiti infections lead to reduced fertility and productivity in cattle causing high economic losses, not only in Europe, but also in Asia and Africa. Mild to severe clinical signs, such as anasarca, oedema, orchitis, hyperkeratosis, and characteristic skin and mucosal cysts, are due to B. besnoiti tachyzoite and bradyzoite replication in intermediate host tissues. So far, there are no commercially available effective drugs against this parasite. Curcumin, a polyphenolic compound from Curcuma longa rhizome is well-known for its antioxidant, anti-inflammatory, immunomodulatory and also anti-protozoan effects. Hence, the objective of this study was to evaluate the effects of curcumin on viability, motility, invasive capacity, and proliferation of B. besnoiti tachyzoites replicating in primary bovine umbilical vein endothelial cells (BUVEC) in vitro. Functional inhibition assays revealed that curcumin treatments reduce tachyzoite viability and induce lethal effects in up to 57% of tachyzoites (IC50 in 5.93 μM). Referring to general motility, significant dose-dependent effects of curcumin treatments were observed. Interestingly, curcumin treatments only dampened helical gliding and twirling activities whilst longitudinal gliding motility was not significantly affected. In addition, curcumin pretreatments of tachyzoites resulted in a dose-dependent reduction of host cell invasion as detected by infections rates at 1 day p. i. These findings demonstrate feeding cattle with Curcuma longa rhizomes may represent a new strategy for besnoitiosis treatment.