Project description:The fungus Thelonectria discophora SANK 18292 produces the iminosugar nectrisine, which has a nitrogen-containing heterocyclic 5-membered ring and acts as a glycosidase inhibitor. In our previous study, an oxidase (designated NecC) that converts 4-amino-4-deoxyarabinitol to nectrisine was purified from T. discophora cultures. However, the genes required for nectrisine biosynthesis remained unclear. In this study, the nectrisine biosynthetic gene cluster in T. discophora was identified from the contiguous genome sequence around the necC gene. Gene disruption and complementation studies and heterologous expression of the gene showed that necA, necB, and necC could be involved in nectrisine biosynthesis, during which amination, dephosphorylation, and oxidation occur. It was also demonstrated that nectrisine could be produced by recombinant Escherichia coli coexpressing the necA, necB, and necC genes. These findings provide the foundation to develop a bacterial production system for nectrisine or its intermediates through genetic engineering.ImportanceIminosugars might have great therapeutic potential for treatment of many diseases. However, information on the genes for their biosynthesis is limited. In this study, we report the identification of genes required for biosynthesis of the iminosugar nectrisine in Thelonectria discophora SANK 18292, which was verified by disruption, complementation, and heterologous expression of the genes involved. We also demonstrate heterologous production of nectrisine by recombinant E. coli, toward developing an efficient production system for nectrisine or its intermediates through genetic engineering.
Project description:Recent collections and herbarium specimens of Rugonectria and Thelonectria from different regions of China were examined. Using combined analyses of morphological and molecular data, 17 species are recognised including three species of Rugonectria and 14 species in Thelonectria. Amongst them, R.microconidia and T.guangdongensis are new to science. Rugonectriamicroconidia on mossy bark is characterised by superficial, yellow to orange, pyriform to subglobose perithecia with a warted surface; ellipsoidal to broadly ellipsoidal, striate, uniseptate ascospores; and allantoid to rod-shaped, aseptate microconidia. Thelonectriaguangdongensis possesses bright red perithecia with a slightly roughened surface and a prominently dark papilla; ellipsoidal, smooth, uniseptate ascospores; and subcylindrical, slightly curved, multiseptate macroconidia. Morphological distinctions and sequence divergences between the new species and their close relatives are discussed. Name changes for the previously recorded species in China are noted.
Project description:A novel dsRNA virus named "Thelonectria quadrivirus 1" (TQV1) was found in a member of the genus Thelonectria (Ascomycota), isolated from a root associated with stem collar necrosis of Fraxinus excelsior L. The complete genome of TQV1 is composed of four segments, each containing a single ORF on the positive sense RNA. The sequence of the 5´ (5´-(C/T)ACGAAAAA-3´) and 3´termini (5´AT(T/G)AGCAATG(T/C)GC(G/A)CG-3') of dsRNA 1 (4876 bp), dsRNA 2 (4312 bp), dsRNA 3 (4158 bp), and dsRNA 4 (3933 bp) are conserved. Based on its genome organization and phylogenetic position, TQV1 is suggested to be a new member of the family Quadriviridae. This is the first report of a mycovirus infecting a member of the genus Thelonectria.
Project description:A fungus, Thelonectria discophora SANK 18292 (JCM 30947), produces nectrisine that has a nitrogen-containing heterocyclic 5-membered ring acting as a glycosidase inhibitor. Our previous study showed the possibility that 4-amino-4-deoxyarabinitol was enzymatically converted to nectrisine but the enzyme was not known. In order to characterize the enzyme, which is designated as NecC, it was purified from the fungus using ammonium sulfate precipitation and anion exchange chromatography. Liquid chromatography-tandem mass spectrometry analysis of NecC tryptic digests revealed partial NecC protein sequences. Subsequently, the partial DNA fragments were amplified by polymerase chain reaction with degenerate oligonucleotide primers and cloned. Then, necC complete genomic DNA was cloned by screening a genomic library of the fungus. Recombinant NecC also had NecC enzymatic activity, thus providing verification for the necC gene. NecC presumably belonged to the family of glucose methanol choline oxidoreductases, forming oligomers ranging approximately from 8 mer to 16 mer based on the results of native PAGE, and was also found to have a melting temperature of 57 °C, an optimal reaction condition of pH 7 at 30 °C, an activity inhibited by Cu(2+) or ethylenediaminetetraacetic acid, and 4-amino-4-deoxyarabinitol as its preferred substrate. It was also indicated that not nectrisine but 4-amino-4-deoxyarabinitol was mainly extracted from the mycelium, and then was converted to nectrisine by the enzyme NecC in vitro. We believe that these findings are helpful to establish a nectrisine manufacturing process at large scale with the fungus.