Project description:Previous study we have reported the cucumber TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family gene BRANCHED1 (CsBRC1) as a main transcription factor functions to regulate shoot branching. Here, we found CsBRC1 (CsTCP18b in this study) had a paralogous gene CsTCP18a. To investigate whether the function of CsTCP18a was same as CsTCP18b, we carried out biochemical experiments and genetic transformation. The Real-Time PCR and in situ hybridization showed that CsTCP18a displayed different expression patterns in cucumber compared with CsTCP18b. Ectopic expression of CsTCP18a in Arabidopsis tcp18 (brc1) mutants resulted in a decreased number of rosette branches and rosette leaves, whereas silencing CsTCP18a in cucumber only led to a deformed true leaf of seedling without influencing the shoot branching. RNA-seq analysis of wild-type plants and CsTCP18a-RNAi lines implicated that CsTCP18a regulated early leaf development of cucumber through affecting the transcripts of auxin and cytokinin related genes. Further studies indicated that CsTCP18a could directly interact with CsTCP10 and CsTCP18b in vitro and in vivo. Therefore, our data suggested that CsTCP18a had functional redundancy with CsTCP18b in inhibiting axillary buds outgrowth, and it could also regulate leaf development during cucumber seedling.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces.
Project description:Plants are colonized by a variety of microorganisms, the plant microbiota. In the phyllosphere, the above-ground parts of plants, bacteria are the most abundant inhabitants. Most of these microorganisms are not pathogenic and the plant responses to commensals or to pathogen infection in the presence of commensals are not well understood. We report the Arabidopsis leaf transcriptome after 3 to 4 weeks of colonization by Methylobacterium extorquens PA1 and Sphingomonas melonis Fr1, representatives of two abundant genera in the phyllosphere, compared to axenic plants. In addition, we also sequenced the transcriptome of Arabidopsis 2 and 7 days after spray-infection with a low dose of P. syringae DC3000 and in combination with the commensals.
Project description:The phyllosphere is colonized by a wide variety of microorganisms including epiphytes, plant-pathogenic fungus, bacteria, as well as human or animal pathogens. However, little is known about how microbial community composition changes with the development of angular leaf-spot of cucumber. Here, 18 mixed samples were collected based on the lesion coverage rate (LCR) of angular leaf-spot of cucumber from three disease severity groups (DM1: symptomatic-mild, DM2: symptomatic-moderate, DM3: symptomatic-severe). In our study, the microbial community structure and diversity were examined by Illumina MiSeq sequencing. A significant differences was observed in α diversity and community structure among three disease severity groups. The phyllosphere microbiota was observed to be dominated by bacterial populations from Proteobacteria, Actinobacteria, and Firmicutes, as well as fungal species from Ascomycota and Basidiomycota. In addition, some plant-specific microbe such as Sphingomonas, Methylobacterium, Pseudomonas, and Alternaria showed significant changes in their relative abundance of population. The LCR was correlated negatively with Sphingomonas, Methylobacterium, Quadrisphaera, and Lactobacillus, whereas correlated positively with Pseudomonas and Kineococcus (p < 0.05). The LCR was negatively correlated with Alternaria and Arthrinium of the fungal communities (p < 0.05). Molecular ecological networks of the microbial communities were constructed to show the interactions among the OTUs. Our current results indicated that the competitive relationships among species were broken with the development of angular leaf-spot of cucumber. The microbial community composition changed over the development of angular leaf-spot of cucumber. The result of molecular ecological networks indicated that the overall bacterial community tends toward mutualism from the competition. The development of angular leaf-spot of cucumber affected the ecosystem functioning by disrupting the stability of the microbial community network. This work will help us to understand the host plant-specific microbial community structures and shows how these communities change throughout the development of angular leaf-spot of cucumber.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces. We designed transcriptome arrays and investigated which genes had different transcript levels in the phyllosphere of common bean (Phaseolus vulgaris) as compared to agar surfaces. Since water availability is considered an important factor in phyllosphere survival and activity, we included both high and low relative humidity treatments for the phyllosphere-grown cells. In addition, we determined the expression profile under pollutant exposure by the inclusion of two agar surface treatments, i.e. with and without 4-chlorophenol.
Project description:Corynespora leaf spot (CSL), caused by Corynespora cassiicola, has become one of the most important foliar diseases of cultivated cucumber. However, the defense mechanisms of cucumber plants in response to C. cassiicola are still poorly understood. Here, proteins from resistant plants were analyzed using isobaric tags for relative and absolute quantification (iTRAQ). A total of 286 differentially expressed proteins were identified (P<0.05, ratio>1.2 or <0.83) at 6 and 24 h after pathogen inoculation in the resistant cucumber cultivar Jinyou 38. Some of the early responses to C. cassiicola infection were revealed, and four vital clues regarding the resistance of Cucumis sativus to cucumber CLS were discovered. First, the proteomic approach revealed the modulation of signaling pathways in resistant cucumber plants in response to C. cassiicola infection. Second, the plant immune system recognizes the pathogen and initiates the expression of basal immune response proteins, including those related to defense and stress responses, signal transduction, cell metabolism and redox regulation. Third, the common stress pathways were activated by C. cassiicola; in particular, mildew resistance locus O (MLO) proteins played a crucial role in the prevention of CLS. Fourth, the rapid activation of the carbohydrate and secondary metabolic pathways, the modification and reinforcement of cell walls, and the adjustment of the apoplectic environment to high-stress conditions were crucial in cucumber resistance to CLS disease. Overall, our data increase the knowledge of incompatible interactions between plants and pathogens and provide new insight into the contribution of molecular processes in cucumber to disease resistance.
Project description:Nitrogen is the most important mineral nutrient of plant. As a worldwide and economically important vegetable, cucumber (Cucumis sativus L.) has a strong nitrogen-dependence. We took whole transcriptome sequencing approach to compare the gene expression profiles of cucumber leaves and roots grown under sufficient or insufficient nitrate supply. Analysis of the transcriptome data revealed that the root and leaf adapt different response mechanisms to long-term nitrogen deficiency. Photosynthesis and carbohydrate biosynthetic process were pronouncedly and specifically reduced in leaf, while the ion transport function, cell wall and phosphorus-deficiency response function seem systematically down-regulated in root. Genes in nitrogen uptake and assimilation are decreased in root, but some are increased in leaf under nitrogen deficiency. Several lines of evidence suggest that the altered gene expression networks support the basic cucumber growth and development likely through successful nitrogen remobilization involving in the induced expression of genes in ABA and ethylene pathways. cucumber leaf and root mRNA of 28-day after sowing nitrogen deficiency and sufficiency deep sequencing, using Illumina HiSeq 2000
Project description:Nitrogen is the most important mineral nutrient of plant. As a worldwide and economically important vegetable, cucumber (Cucumis sativus L.) has a strong nitrogen-dependence. We took whole transcriptome sequencing approach to compare the gene expression profiles of cucumber leaves and roots grown under sufficient or insufficient nitrate supply. Analysis of the transcriptome data revealed that the root and leaf adapt different response mechanisms to long-term nitrogen deficiency. Photosynthesis and carbohydrate biosynthetic process were pronouncedly and specifically reduced in leaf, while the ion transport function, cell wall and phosphorus-deficiency response function seem systematically down-regulated in root. Genes in nitrogen uptake and assimilation are decreased in root, but some are increased in leaf under nitrogen deficiency. Several lines of evidence suggest that the altered gene expression networks support the basic cucumber growth and development likely through successful nitrogen remobilization involving in the induced expression of genes in ABA and ethylene pathways.
Project description:Apple leaf spot caused by the Alternaria alternata f. sp. mali (ALT1) fungus is one of the most devastating diseases of apple (Malus × domestica). We identified a hairpin RNA (hpRNA)-mediated small RNAs, MdhpRNA277, from apple (cv. ‘Golden Delicious’) that is induced by infection with ALT1. MdhpRNA277 produces mdm-siR277-1 and mdm-siR277-2, which target five R genes, MdRNL1, MdRNL2, MdRNL3, MdRNL4, and MdRNL5, that are expressed at high levels in the resistant apple variety ‘Hanfu’ and at low levels in the susceptible variety ‘Golden Delicious’ following ALT1 infection. MdhpRNA277 is strongly induced in ‘Golden Delicious’ but was not induced in ‘Hanfu’ following ALT1 inoculation. The promoter activity of MdhpRNA277 was much stronger in ‘Golden Delicious’ than in ‘Hanfu’ after ALT1 inoculation. We identified a single nucleotide polymorphism (SNP) in the MdhpRNA277 promoter region between the susceptible variety ‘Golden Delicious’ (pMdhpRNA277-GD) and resistant variety ‘Hanfu’ (pMdhpRNA277-HF). The transcription factor MdWHy binds to pMdhpRNA277-GD, but not to pMdhpRNA277-HF. Transgenic ‘GL-3’ apple lines expressing pMdhpRNA277-GD: MdhpRNA277 were more susceptible to ALT1 infection than were those expressing pMdhpRNA277-HF:MdhpRNA277 due to induced mdm-siR277 accumulation and low levels of expression of the five target R genes. The failure of MdWHy to bind to pMdhpRNA277-HF might contribute to the low levels of MdhpRNA277 and mdm-siR277-1/-2 expression and the high levels of R gene expression and resistance to Alternaria leaf spot in resistant apple varieties. We confirmed that the SNP in pMdhpRNA277 is associated with Alternaria leaf spot resistance by analyzing the progeny of three additional crosses. The SNP identified in this study could be used as a marker to distinguish between apple varieties that are resistant or susceptible to Alternaria leaf spot.