Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response. The cecum, left lobe of the liver, and spleen were isolated from mice for microarray processing with three or more replicates for six expermental conditions: non-treated control, SAHC POD1, SAHC.AC POD2, SAHC.FMT POD2, SAHC.AC POD7, SAHC.FMT POD7
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Alterations in intestinal microbiota and intestinal short chain fatty acids profiles have been associated with the pathophysiology of obesity and insulin resistance. Whether intestinal microbiota dysbiosis is a causative factor in humans remains to be clarified We examined the effect of fecal microbial infusion from lean donors on the intestinal microbiota composition, glucose metabolism and small intestinal gene expression. Male subjects with metabolic syndrome underwent bowel lavage and were randomised to allogenic (from male lean donors with BMI<23 kg/m2, n=9) or autologous (reinfusion of own feces, n=9) fecal microbial transplant. Insulin sensitivity and fecal short chain fatty acid harvest were measured at baseline and 6 weeks after infusion. Intestinal microbiota composition was determined in fecal samples and jejunal mucosal biopsies were also analyzed for the host transcriptional response. Insulin sensitivity significantly improved six weeks after allogenic fecal microbial infusion (median Rd: from 26.2 to 45.3 μmol/kg.min, p<0.05). Allogenic fecal microbial infusion increased the overall amount of intestinal butyrate producing microbiota and enhanced fecal harvest of butyrate. Moreover, the transcriptome analysis of jejunal mucosal samples revealed an increased expression of genes involved in a G-protein receptor signalling cascade and subsequently in glucose homeostasis. Lean donor microbial infusion improves insulin sensitivity and levels of butyrate-producing and other intestinal microbiota in subjects with the metabolic syndrome. We propose a model wherein these bacteria provide an attractive therapeutic target for insulin resistance in humans. (Netherlands Trial Register NTR1776).
Project description:Microbial RNAseq analysis of cecal and fecal samples collected from mice colonized with the microbiota of human twins discordant for obesity. Samples were colleted at the time of sacrifice, or 15 days after colonization from mice gavaged with uncultured or cultured fecal microbiota from the lean twins or their obese co-twins. Samples were sequenced using Illumina HiSeq technology, with 101 paired end chemistry. Comparisson of microbial gene expression between the microbiota of lean and obese twins fed a Low fat, rich in plant polysaccharide diet.
Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response.
Project description:Microbial RNAseq analysis of cecal and fecal samples collected from mice colonized with the microbiota of human twins discordant for obesity. Samples were colleted at the time of sacrifice, or 15 days after colonization from mice gavaged with uncultured or cultured fecal microbiota from the lean twins or their obese co-twins. Samples were sequenced using Illumina HiSeq technology, with 101 paired end chemistry.
Project description:Bacteroidaceae are common gut microbiota members in all warm-blooded animals. However, if Bacteroidaceae are to be used as probiotics, the species selected for different hosts should reflect the natural distribution. In this study, we therefore evaluated host adaptation of bacterial species belonging to the family Bacteroidaceae. B. dorei, B. uniformis, B. xylanisolvens, B. ovatus, B. clarus, B. thetaiotaomicron and B. vulgatus represented human-adapted species while B. gallinaceum, B. caecigallinarum, B. mediterraneensis, B. caecicola, M. massiliensis, B. plebeius and B. coprocola were commonly detected in chicken but not human gut microbiota. There were 29 genes which were present in all human-adapted Bacteroides but absent from the genomes of all chicken isolates and these included genes required for the pentose cycle, and glutamate or histidine metabolism. These genes were expressed during an in vitro competitive assay, in which human-adapted Bacteroides species overgrew the chicken adapted isolates. Not a single gene specific for the chicken-adapted species was found. Instead, chicken adapted species exhibited signs of frequent horizontal gene transfer, of KUP, linA and sugE genes in particular. The differences in host adaptation should be considered when the new generation of probiotics for humans or chickens is designed.
Project description:The chicken gastrointestinal tract (GIT) harbours a complex microbial community, involved in several physiological processes such as host immunomodulation and feed digestion. Other studies were already performed to define the chicken gut metagenome and its fecal metaproteome. For the first time, the present study analysed dietary effects on the protein inventory of the microbiota in crop and ceca of broilers. We performed quantitative label-free metaproteomics by using 1D-gel electrophoresis coupled with LC-MS/MS to identify the structural and functional changes triggered by diets supplied with varying amount of mineral phosphorus (P) and microbial phytase (MP). Phylogenetic assessment based on label-free quantification (LFQ) values of the proteins identified Lactobacillaceae as the major family in the crop section regardless of the diet, whereas proteins belonging to the family Veillonellaceae increased with the P supplementation. Within the ceca section, proteins of Bacteroidaceae were more abundant in the P-supplied diets, whereas proteins of Eubacteriaceae decreased with the P-addition. Proteins of the Ruminococcaceae increasedraised with the amount of MP while proteins of Lactobacillaceae werewas more abundant in the MP-lacking diets. Classification of the identified proteins into COGs and KEGG pathways underlined a diverse microbiota activity depending on the dietary regimen, indicating a thriving microbial community in the case of P and MP supplementation, and stressed microbial community when no P and MP were supplied. Insights oninto the identified KEGG pathways, as well as comparison between the GIT sections, dietary treatments, and the bacterial families encoding for the pathways of interest are provided. T) harbours a complex microbial community, involved in several physiological processes such as host immunomodulation and feed digestion. Other studies were already performed to define the chicken gut metagenome and its fecal metaproteome. For the first time, the present study analysed dietary effects on the protein inventory of the microbiota in crop and ceca of broilers. We performed quantitative label-free metaproteomics by using 1D-gel electrophoresis coupled with LC-MS/MS to identify the structural and functional changes triggered by diets supplied with varying amount of mineral phosphorus (P) and microbial phytase (MP). Phylogenetic assessment based on label-free quantification (LFQ) values of the proteins identified Lactobacillaceae as the major family in the crop section regardless of the diet, whereas proteins belonging to the family Veillonellaceae increased with the P supplementation. Within the ceca section, proteins of Bacteroidaceae were more abundant in the P-supplied diets, whereas proteins of Eubacteriaceae decreased with the P-addition. Proteins of the Ruminococcaceae increasedraised with the amount of MP while proteins of Lactobacillaceae werewas more abundant in the MP-lacking diets. Classification of the identified proteins into COGs and KEGG pathways underlined a diverse microbiota activity depending on the dietary regimen, indicating a thriving microbial community in the case of P and MP supplementation, and stressed microbial community when no P and MP were supplied. Insights oninto the identified KEGG pathways, as well as comparison between the GIT sections, dietary treatments, and the bacterial families encoding for the pathways of interest are provided.