Project description:Polycyclic aromatic hydrocarbons (PAHs) are widely distributed pollutants. As in saturated PAH-contaminated sites oxygen is rapidly depleted, microorganisms able to use these compounds as a carbon source in the absence of molecular oxygen are crucial for their consumption. Here, we described the metabolic pathway for anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture (TRIP) obtained from a natural asphalt lake. The dominant organism of this culture belongs to the Desulfobacteraceae family of deltaproteobacteria. Proteogenome analysis revealed that the metabolic capacity of this bacterium includes the key enzymes for dissimilatory sulfate reduction, the Embden-Meyerhof-Parnas pathway, a complete tricarboxylic acid cycle as well as the key elements of the Wood-Ljungdahl pathway. Genes encoding enzymes potentially involved in the degradation of phenanthrene were identified in the genome of this bacterium. Two gene clusters were identified encoding a carboxylase enzyme involved in the activation of phenanthrene, as well as genes encoding reductases potentially involved in subsequent ring dearomatization and reduction steps. The predicted metabolic pathways were corroborated by transcriptome and proteome analyses and provide the first metabolic pathway for anaerobic degradation of three-rings PAHs.
2019-01-23 | PXD010151 | Pride
Project description:Biodegradation of Phenanthrene by Rhizobium petrolearium SL-1
| PRJEB12813 | ENA
Project description:Anaerobic biodegradation of phenanthrene and pyrene by sulfate-reducing enrichment cultures obtained from freshwater lake sediments
Project description:au10-04_phytoremediation; impact of sucrose on the tolerance of phenanthrene Effect of phenanthrene and sucrose - We test 3 conditions plants non-treated (C or t0), plants treated with phenanthrene (P) and plants tread with phenanthrene and sucrose (S). The plants were grown on MS/2 media for 17 days and then transferred on the corresponding condition. We took a sample of 30 plants at different times (0, 30 min, 2h, 4h, 8h and 24h).
Project description:Studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. During the biodegradation kinetics with phenanthrene, fluoranthene or a mix of both pollutants, we identified the targeted set of genes induced by these pollutants, compared to basal expression detected with glucose. Hybridizing total DNA extracted from S3, we show the efficiency of our probe design to study a complex environment. Despite the relative small size of our probes (23-mers), their sensitivity is reliable as we can detect the presence of genes in this complex mixture. Obtained results are further described in Sébastien Terrat, Eric Peyretaillade, Olivier Gonçalves, Eric Dugat-Bony, Fabrice Gravelat, and Pierre Peyret. 2010 - Studying the ‘Unkown’ with Metabolic Design, a new probe design software for explorative functional microarrays development. Nucleic Acids Research (submited).
2010-10-01 | GSE21402 | GEO
Project description:anaerobic phenanthrene degradation denitrifying enrichment Raw sequence reads
Project description:Studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. During the biodegradation kinetics with phenanthrene, fluoranthene or a mix of both pollutants, we identified the targeted set of genes induced by these pollutants, compared to basal expression detected with glucose. Hybridizing total DNA extracted from S3, we show the efficiency of our probe design to study a complex environment. Despite the relative small size of our probes (23-mers), their sensitivity is reliable as we can detect the presence of genes in this complex mixture. Obtained results are further described in Sébastien Terrat, Eric Peyretaillade, Olivier Gonçalves, Eric Dugat-Bony, Fabrice Gravelat, and Pierre Peyret. 2010 - Studying the ‘Unkown’ with Metabolic Design, a new probe design software for explorative functional microarrays development. Nucleic Acids Research (submited). A 17 chip study was realized using total RNA recovered from separate cultures of Sphingomonas paucimobilis sp. EPA505 with phenanthrene, fluoranthene or a mix of these both pollutants as sole carbon and energy source. A negative kinetic expermient was realized with glucose as sole carbon and energy source. Each chip measures the expression level of 8 genes from Sphingomonas paucimobilis sp. EPA505 with 23-mer probes (a total of 8,048 probes) using a new design approach. We also assess metabolic capacities of microbial communities in an aromatic hydrocarbons contaminated soil named S3. Each probe was spotted in triplicate, and a total of 8,863 random probes was used to determine the background noise.