Project description:Transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed several key genes related to solvent formation. For example, spo0A and adhEII have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018.
Project description:Transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed several key genes related to solvent formation. For example, spo0A and adhEII have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018. Cells for RNA isolation were grown on P2 medium and collected at 9 h, 13 h, 17 h, 21 h, 24 h and 30 h by centrifugation at 4M-BM-0C and 4500 x g for 10 min. Total RNA was extracted and purified by using Trizol (Invitrogen, Carlsbad, CA, USA) and RNeasy cleanup kit (Qiagen, Inc., Valencia, CA, USA) according to the manufacturerM-bM-^@M-^Ys protocol. The total RNA yield was quantified by spectrophotometric analysis (NanoDrop Technology, Cambridge, UK) and the quality was verified by gel electrophoresis. Agilent oligonucleotide microarrays technology was used for monochromic analysis, in which probes (size: 60bp; three replicates for each ORF) from the two groups were labeled by incorporation of cyanine 3 (Cy3) (Agilent Technologies, Palo Alto, CA, USA). Average linkage hierarchical clustering was performed using Cluster 3.0, and gene clusters were visualized in Treeview
Project description:Previously, we performed DNA array-based transcriptomic analysis of Clostridium acetobutylicum biofilm adsorbed onto fibrous matrix in batch fermentation. Here, to further shed light on the transcriptomic modulation of maturing Clostridium acetobutylicum biofilm, we performed the DNA array-based transcriptomic analysis in repeated-batch fermentation. Significant time course changes in expression levels were observed for the genes involved in amino acid metabolism, oligopeptide ABC transporter, nitrogen fixation, and various other processes.
Project description:Clostridium acetobutylicum is a Gram-positive, endospore-forming bacterium that is considered as a strict anaerobe. It ferments sugars to the organic acids acetate and butyrate or shifts to formation of the solvents - ethanol, butanol and acetone. In most bacteria the major regulator of iron homeostasis is Fur (ferric uptake regulator). Analysis of the genome of Clostridium acetobutylicum has revealed three genes encoding Fur-like proteins. The amino acid sequece of one of them showed 70% similarity to the Fur protein of the closely related Bacillus subtilis.<br>Thus, to gain insight into the role of Fur and the mechanisms for maintenance of iron homeostasis in this strict anaerobic organism, we determined its transcriptional profile in response to iron limitation and inactivation of fur.
Project description:Metabolite accumulation has pleiotropic, including toxic, effects on cellular physiology, but such effects are not well understood at the genomic level. Using DNA microarrays, the Clostridium acetobutylicum transcriptional stress response to acetate was analyzed. Keywords: stress response
Project description:Metabolite accumulation has pleiotropic, including toxic, effects on cellular physiology, but such effects are not well understood at the genomic level. Using DNA microarrays, the Clostridium acetobutylicum transcriptional stress response to butanol was analyzed. Keywords: stress response
Project description:Metabolite accumulation has pleiotropic, including toxic, effects on cellular physiology, but such effects are not well understood at the genomic level. Using DNA microarrays, the Clostridium acetobutylicum transcriptional stress response to butyrate was analyzed. Keywords: stress response