Project description:The aim was to identify the effect of caspase inhibition on changes in gene expression in MCF-7 cells induced by a combination of TRAIL and LCL-161. Treated samples and control samples were collected after 24 h of treatment.
Project description:The aim was to identify changes in gene expression in MCF-7 cells induced by a combination of TRAIL and LCL-161. Treated samples and control samples were collected after 24 h of treatment and after 96 h of treatment followed by a three-day period in normal medium.
Project description:Small-molecule Smac mimetics target inhibitor of apoptosis (IAP) proteins to induce TNFα-dependent apoptosis in cancer cells and several Smac mimetics have been advanced into clinical development as a new class of anticancer drugs. However, preclinical studies have shown that only a small subset of cancer cell lines are sensitive to Smac mimetics used as single agents and these cell lines are at risk of developing drug resistance to Smac mimetics. Thus, it is important to understand the molecular mechanisms underlying intrinsic and acquired resistance of cancer cells to Smac mimetics in order to develop effective therapeutic strategies to overcome or prevent Smac mimetic resistance. We established Smac mimetic resistant sublines derived from MDA-MB-231 breast cancer cells, which exhibit exquisite sensitivity to the Smac mimetic SM-164, and used microarrays to detail the global programme of gene expression underlying SM-164 resistance in MDA-MB-231 cells and identified differentially expressed genes in SM-164-resistant and -sensitive MDA-MB-231 cells. SCID mice with MDA-MB-231 xenograft tumors were treated with 5 mg/kg of SM-164 intravenously for 5 days/week for 2 weeks. SM-164-regressed MDA-MB-231 tumors regrew after treatment ended. Tumor cells from these regrown MDA-MB-231 tumors were isolated and total RNAs were prepared for microarray analysis.
Project description:BackgroundEvasion from programmed cell death is a hallmark of cancer and can be achieved in cancer cells by overexpression of inhibitor of apoptosis proteins (IAPs). Second mitochondria-derived activator of caspases (SMAC) directly bind to IAPs and promote apoptosis; thus, SMAC mimetics have been investigated in a variety of cancer types. particularly in diseases with high inflammation and NFĸB activation. Given that elevated TNFα levels and NFĸB activation is a characteristic feature of myeloproliferative neoplasms (MPN), we investigated the effect of the SMAC mimetic LCL-161 on MPN cell survival in vitro and disease development in vivo.MethodsTo investigate the effect of the SMAC mimetic LCL-161 in vitro, we utilized murine and human cell lines to perform cell viability assays as well as primary bone marrow from mice or humans with JAK2V617F-driven MPN to interrogate myeloid colony formation. To elucidate the effect of the SMAC mimetic LCL-161 in vivo, we treated a JAK2V617F-driven mouse model of MPN with LCL-161 then assessed blood counts, splenomegaly, and myelofibrosis.ResultsWe found that JAK2V617F-mutated cells are hypersensitive to the SMAC mimetic LCL-161 in the absence of exogenous TNFα. JAK2 kinase activity and NFĸB activation is required for JAK2V617F-mediated sensitivity to LCL-161, as JAK or NFĸB inhibitors diminished the differential sensitivity of JAK2V617F mutant cells to IAP inhibition. Finally, LCL-161 reduces splenomegaly and may reduce fibrosis in a mouse model of JAK2V617F-driven MPN.ConclusionLCL-161 may be therapeutically useful in MPN, in particular when exogenous TNFα signaling is blocked. NFĸB activation is a characteristic feature of JAK2V617F mutant cells and this sensitizes them to SMAC mimetic induced killing even in the absence of TNFα. However, when exogenous TNFα is added, NFĸB is activated in both mutant and wild-type cells, abolishing the differential sensitivity. Moreover, JAK kinase activity is required for the differential sensitivity of JAK2V617F mutant cells, suggesting that the addition of JAK2 inhibitors to SMAC mimetics would detract from the ability of SMAC mimetics to selectively target JAK2V617F mutant cells. Instead, combination therapy with other agents that reduce inflammatory cytokines but preserve JAK2 signaling in mutant cells may be a more beneficial combination therapy in MPN.
Project description:Small-molecule Smac mimetics target inhibitor of apoptosis (IAP) proteins to induce TNFα-dependent apoptosis in cancer cells and several Smac mimetics have been advanced into clinical development as a new class of anticancer drugs. However, preclinical studies have shown that only a small subset of cancer cell lines are sensitive to Smac mimetics used as single agents and these cell lines are at risk of developing drug resistance to Smac mimetics. Thus, it is important to understand the molecular mechanisms underlying intrinsic and acquired resistance of cancer cells to Smac mimetics in order to develop effective therapeutic strategies to overcome or prevent Smac mimetic resistance. We established Smac mimetic resistant sublines derived from MDA-MB-231 breast cancer cells, which exhibit exquisite sensitivity to the Smac mimetic SM-164, and used microarrays to detail the global programme of gene expression underlying SM-164 resistance in MDA-MB-231 cells and identified differentially expressed genes in SM-164-resistant and -sensitive MDA-MB-231 cells.
Project description:Clinical observations suggest the existence of shared resistance pathways between rituximab and chemotherapy agents. To explore the mechanisms of rituximab resistance, our group created rituximab-resistant cell lines (RRCLs), which display altered expression of several inhibitor of apoptosis (IAP) family proteins. Here, we provide evidence to support pharmacologically targeting IAPs in lymphoma with LCL-161, a small molecule mimetic of the second mitochondria-derived activator of caspases (SMAC). The antitumor effect of LCL-161 was determined using luminescent adenosine triphosphate assays, flow cytometry, SCID mouse xenografts, and ex vivo patient biopsy sample studies. In vitro exposure to LCL-161 also resulted in a dose-dependent decrease in IAP levels, along with synergistic enhancement of the antitumor effect of cytotoxic chemotherapy, in rituximab-sensitive cell lines and RRCLs. In addition, LCL-161 increased the cytotoxic effect of the proteasome inhibitor carfilzomib in ex vivo lymphoma patient samples. The combination of LCL-161 with the chemotherapy regimen rituximab, gemcitabine, and vinorelbine (RGV) improved in vivo survival compared with RGV alone in severe combined immunodeficient mice implanted with RRCLs but not in animals implanted with rituximab-sensitive cell lines. In summary, LCL-161 exhibits synergistic antitumor activity in both in vitro and in vivo models of resistant lymphoma. Our data support further preclinical investigation of LCL-161 as a novel antilymphoma agent.
Project description:The effect of the Smac mimetic BV6 on the transcriptional regulation in the alveolar rhabdomyosarcoma cell line RH30 was investigated by bulk RNA-sequencing. To this end, RH30 cells were treated with 5 µM BV6 for 24 h, or left untreated. Here, a regulation of several NF-κB target genes could be observed.