Project description:Background: Pantoea ananatis LMG 2665T synthesizes and utilizes acyl homoserine lactones (AHLs) for signaling. In this strain, short chain AHLs (C4 to C8) are produced by the EanI/R quorum sensing (QS) system that is involved in pathogenicity and biofilm formation. The complete set of genes regulated by the EanI/R system in P. ananatis LMG 2665T is still not fully known. In the present study, RNA-seq was used to analyze the transcriptome profiles controlled by the EanI/R system in this strain by comparing the wild type strain and its QS mutant 2665T ean∆I/R during lag and log stages. The RNA seq data was validated by RT qPCR. Results: The results showed that the EanI/R regulon in P. ananatis LMG 2665T comprised 144 genes, constituting 3.3% of the whole transcriptome under the experimental conditions in this study. The majority of genes regulated by the EanI/R system included genes for flagella assembly, bacterial chemotaxis, pyruvate metabolism, two component system, metabolic pathways, microbial metabolism and biosynthesis of secondary metabolites. Conclusions: This is the first study to identify the EanI/R QS regulon in P. ananatis LMG 2665T. Functional analysis of genes regulated the EanI/R system in LMG 2665T could help unveil genes that play a vital role in pathogenesis and survival strategies of this pathogen.
Project description:Comparisson of expression profiling of a etrA deletion mutant strain (experimental sample) with that of the wild type Shewanella oneidensis MR-1 strain to assess global direct/indirect genetic regulation EtrA in Shewanella oneidensis MR-1 shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulator Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is complex and not well understood. Whole-genome expression profiling using a etrA gene deletion mutant as the experimental sample and the wild type strain as the reference, determine that EtrA fine-tunes the expression of genes involved in various anaerobic metabolic pathways, including nitrate, fumarate and dimethyl sulfoxide reduction. Moreover, genes involved in prophage activation and and genes implicated in aerobic metabolism were also differentially expressed. In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and cofers physiological advantages to the strain under certain growth conditions.
Project description:To identify the transcriptional targets of the DNA-binding response regulator HnoC (SO_2540), mRNA transcript levels in Shewanella oneidensis were measured using whole genome microarray analysis. Transcript levels were compared between WT Shewanella oneidensis and a hnoC deletion strain.