Project description:Differential gene transcript amounts between Helicobacter pylori N6 (wild type strain) bacteria and isogenic tlpD mutant grown in liquid culture to similar O.D.600 (1.0; mid log)
Project description:Helicobacter pylori (H.pylori) infection is an important factor in the occurrence of human gastric diseases, but its pathogenic mechanism is not clear. N6-methyladenosine (m6A) is the most prevalent reversible methylation modification in mammalian RNA and it plays a crucial role in controlling many biological processes. We used MeRIP-seq technology to sequence the GES-1 cells infected with Helicobacter pylori(H. pylori) for 48 h.
Project description:Helicobacter pylori (H. pylori) is a human pathogen that infects almost half of the world’s population. Infection with H. pylori is frequently associated with chronic gastritis and can even lead to gastric and duodenal ulcers and gastric cancer. Although the persistent colonization of H. pylori and the development of H. pylori-associated gastritis remain poorly understood, it is believed that, in gastric mucosa, the modulated gastric epithelial cells (GECs) by H. pylori are key contributors. We used microarrays to detail the global programme of gene expression in Helicobacter pylori infected-gastric epithelial cell line AGS cells and identified up-regulated genes induced by Helicobacter pylori infection.
Project description:We performed DNA-protein interaction (ChIP-seq) analyses for Helicobacter pylori N6 wild-type (WT) and HP1021 deletion mutant (ΔHP1021::aphA-3) under oxidative stress (21% O2) and optimal microaerobic growth (5% O2) conditions. We detected 100 binding sites of HP1021 on the H. pylori N6 chromosome, most of which are promoter-located, likely affecting gene transcription. 84 of 100 identified HP1021 binding sites were located near promoter regions. EMSA and ChIP-qPCR confirmed the binding of HP1021 to the promoter region of a few genes.
Project description:Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray in vitro culture cells and in vivo patients of the chronic abdominal complaint. In this study,the effects of H. pylori infection on host gene expression in the gastric antral mucosa of patients with chronic gastritis were examined.
Project description:Helicobacter pylori genome is rich in restriction - modification (R-M) systems. Around 4 % of the genome codes for components of R-M systems. hpyAVIBM, which codes for a putative phase-variable C5 - cytosine methyltransferase (MTase) from H. pylori lacks a cognate restriction enzyme.
Project description:Helicobacter pylori causes chronic gastritis and avoids elimination by the immune system of the infected host. The commensal bacterium Lactobacillus acidophilus has been reported to exert beneficial effects as a supplement during H. pylori eradication therapy. In the present study, we applied whole genome microarray analysis to compare the immune response induced in murine bone marrow derived macrophages (BMDM) stimulated with L. acidophilus, H. pylori, or with both bacteria in combination Microarray expression profiling was performed to analyze stimulation of bone marrow derived macrophages with Helicobacter pylori 251, Lactobacillus acidophilus NCFM or Lactobacillus acidophilus NCFM co-stimulated with Helicobacter pylori 251 were analyzed 5 hours after infection.
Project description:Helicobacter pylori colonizes the stomach of half of the world's population, causing a wide spectrum of disease ranging from asymptomatic gastritis to ulcers to gastric cancer. Although the basis for these diverse clinical outcomes is not understood, more severe disease is associated with strains harboring a pathogenicity island. To characterize the genetic diversity of more and less virulent strains, we examined the genomic content of 15 H. pylori clinical isolates by using a whole genome H. pylori DNA microarray. We found that a full 22% of H. pylori genes are dispensable in one or more strains, thus defining a minimal functional core of 1281 H. pylori genes. While the core genes encode most metabolic and cellular processes, the strain-specific genes include genes unique to H. pylori, restriction modification genes, transposases, and genes encoding cell surface proteins, which may aid the bacteria under specific circumstances during their long-term infection of genetically diverse hosts. We observed distinct patterns of the strain-specific gene distribution along the chromosome, which may result from different mechanisms of gene acquisition and loss. Among the strain-specific genes, we have found a class of candidate virulence genes identified by their coinheritance with the pathogenicity island. Keywords: other
Project description:The purpose of this study was to examine macrophage proteomic changes induced by Helicobacter pylori. Macrophages utilized were the RAW 264.7 murine cell line. Macrophages were treated with H. pylori for 24 hours. The experimental design was a 4-plex isobaric tags for relative and absolute quantification (iTRAQ). In addition to uninfected control and H. pylori infected, the additional two conditions included an inhibitor of deoxyhypusine synthase (N1-guanyl-1,7-diamine-heptane, 1-(7-ammonioheptyl)guanidinium sulfate; GC7) an enzyme involved in the hypusination translation pathway, and the inhibitor plus H. pylori.