Project description:11 RNA-Seq samples from Williams (PI548631), with a variety of tissues especially immature seeds represented; 1 sample is from Williams 55, i mutation with black seed coat (PI547881)
2019-09-03 | GSE123655 | GEO
Project description:Glycine max genome resequencing of UC3New, black seed coat mutation from Clark in 1954
Project description:The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation and the recessive k1 mutation can epistatically overcome the dominant I and i-i alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the i-i and i-k alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-Seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous i-k K1 versus homozygous i-i k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Non-functional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or i-i alleles.
Project description:The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation and the recessive k1 mutation can epistatically overcome the dominant I and i-i alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the i-i and i-k alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-Seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous i-k K1 versus homozygous i-i k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Non-functional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or i-i alleles.
Project description:The plant cell wall performs a number of essential functions including providing shape to many different cell types and serving as a defense against potential pathogens. The net pattern mutation creates breaks in the seed coat of soybean (Glycine max) because of ruptured cell walls. Using RNA-Seq, we examined the seed coat transcriptome from three stages of immature seed development in two pairs of isolines with normal or defective seed coat phenotypes due to the net pattern. The genome-wide comparative study of the transcript profiles of these isolines revealed 364 differentially expressed genes in common between the two varieties that were further divided into different broad functional categories. Genes related to cell wall processes accounted for 19% of the differentially expressed genes in the middle developmental stage of 100-200 mg seed weight. Within this class, the cell wall proline-rich and glycine-rich protein genes were highly differentially expressed in both genetic backgrounds. Other genes that showed significant expression changes in each of the isoline pairs at the 100-200 mg seed weight stage were xylem serine proteinase, fasciclin-related genes, auxin and stress response related genes, TRANSPARENT TESTA 1 (TT1) and other transcription factors. The mutant appears to shift the timing of either the increase or decrease in the levels of some of the transcripts. The analysis of these data sets reveals the physiological changes that the seed coat undergoes during the formation of the breaks in the cell wall.
2014-05-16 | GSE54903 | GEO
Project description:Glycine max (Williams, W55, i mutation) genome resequencing
Project description:The plant cell wall performs a number of essential functions including providing shape to many different cell types and serving as a defense against potential pathogens. The net pattern mutation creates breaks in the seed coat of soybean (Glycine max) because of ruptured cell walls. Using RNA-Seq, we examined the seed coat transcriptome from three stages of immature seed development in two pairs of isolines with normal or defective seed coat phenotypes due to the net pattern. The genome-wide comparative study of the transcript profiles of these isolines revealed 364 differentially expressed genes in common between the two varieties that were further divided into different broad functional categories. Genes related to cell wall processes accounted for 19% of the differentially expressed genes in the middle developmental stage of 100-200 mg seed weight. Within this class, the cell wall proline-rich and glycine-rich protein genes were highly differentially expressed in both genetic backgrounds. Other genes that showed significant expression changes in each of the isoline pairs at the 100-200 mg seed weight stage were xylem serine proteinase, fasciclin-related genes, auxin and stress response related genes, TRANSPARENT TESTA 1 (TT1) and other transcription factors. The mutant appears to shift the timing of either the increase or decrease in the levels of some of the transcripts. The analysis of these data sets reveals the physiological changes that the seed coat undergoes during the formation of the breaks in the cell wall. Examination of soybean isolines in two different genetic background at three different seed weight stages: Seed coats of Clark standard (CS, wild type) & Clark defective (CD, seed coat mutant), Harosoy Standard (HS) & Harosoy defective (HD) at 50-100mg, 100-200mg and 400-500mg.
Project description:The seed coat of black (iRT) soybean with the dominant R allele begins to accumulate cyanic pigments at the transition stage of seed development (300 – 400 mg fresh seed weight), whereas the brown (irT) nearly-isogenic seed coat with the recessive r allele lacks cyanic pigments at all stages of seed development. We used microarrays to determine global gene expression differences between black (iRT) and brown (irT) soybean seed coats at the transition stage of seed development (300 – 400 mg fresh seed weight).
2011-08-23 | GSE26208 | GEO
Project description:Glycine max (Williams) genome resequencing
Project description:We present results from deep sequencing of small RNA populations from several genotypes of soybean and demonstrate that the CHS siRNAs accumulated only in the seed coats of the yellow varieties having either the dominant I or i-i alleles and not in the pigmented seed coats with homozygous recessive i genotypes. However, the diagnostic CHS siRNAs did not accumulate in the cotyledons of genotypes with the dominant I or i-i alleles thus demonstrating the novelty of an endogenous inverted repeat region of CHS genes driving RNA silencing in trans of non-linked CHS family members in a tissue-specific manner. The phenomenon results in inhibition of a metabolic pathway by siRNAs in one tissue allowing expression of the flavonoid pathway and synthesis of secondary metabolites in other organs as the chalcone synthase small RNAs are found in the seed coats of yellow seeded soybean varieties but not in the cotyledons of the same genotype. In order to compare the population of chalcone synthase related small RNAs, we sequenced 3 to 6 million small RNAs using the Illumina Genome Analyzer from the following four soybean cultivars and tissues with specific genotypes at the I locus: Richland immature seed coats (homozygous for the dominant I allele that specifies yellow seed coat); Williams immature seed coats (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum) Williams (i-i/i-i yellow) immature cotyledons (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum); Williams 55 immature seed coats (a Williams isogenic line homozygous for the recessive i allele that specifics pigmented seed coats. All seed coats and cotyledons were dissected from green stage immature seeds within the fresh weight range of 50-75 mg.