Project description:BackgroundEnterococcus avium is a Gram-positive pathogenic bacterium belonging to the family Enterobacteriaceae. E. avium can cause bacteremia, peritonitis, and intracranial suppurative infection. However, the mechanism of its pathogenesis and its adaptation to a special niche is still unclear.ResultsIn this study, the E. avium strain 352 was isolated from human bile and whole genome sequencing was performed. The E. avium strain 352 consists of a circular 4,794,392 bp chromosome as well as an 87,705 bp plasmid. The GC content of the chromosome is 38.98%. There are 4905 and 99 protein coding sequences in the chromosome and the plasmid, respectively. The genome of the E. avium strain 352 contains number of genes reported to be associated with bile adaption, including bsh, sbcC, mutS, nifI, galU, and hupB. There are also several virulence-associated genes including esp, fss1, fss3, ecbA, bsh, lap, clpC, clpE, and clpP.ConclusionsThis study demonstrates the presence of various virulence factors of the E. avium strain 352, which has the potential to cause infections. Moreover, the genes involved in bile adaption might contribute to its ability to live in bile. Further comparative genomic studies would help to elucidate the evolution of pathogenesis of E. avium.