Project description:Investigation of whole genome gene expression level changes in two strains of the cyanobacteria Atelocyanobacterium thalasaa (UCYN-A) from environmental samples. The diel gene expression analyzed in this study is further described in Muñoz-Marin, M., I. N. Shilova, T. Shi, H. Farnelid & J. P. Zehr. 2017. Unicellular cyanobacterial symbiosis facilitates aerobic nitrogen fixation. Science (to be submitted).
Project description:Although N2 fixation can occur in free-living cyanobacteria, the unicellular endosymbiotic cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) is considered to be a dominant N2-fixing species in marine ecosystems. Four UCYN-A sublineages are known from partial nitrogenase (nifH) gene sequences. However, few studies have investigated their habitat preferences and regulation by their respective hosts in open-ocean versus coastal environments. Here, we compared UCYN-A transcriptomes from oligotrophic open-ocean versus nutrient-rich coastal waters. UCYN-A1 metabolism was more impacted by habitat changes than UCYN-A2. However, across habitats and sublineages genes for nitrogen fixation and energy production were highly transcribed. Curiously these genes, critical to the symbiosis for the exchange of fixed nitrogen for fixed carbon, maintained the same schedule of diel expression across habitats and UCYN-A sublineages, including UCYN-A3 in the open-ocean transcriptomes. Our results undersore the importance of nitrogen fixation in UCYN-A symbioses across habitats, with consequences for community interaction and global biogeochemical cycles.
Project description:Investigation of whole genome gene expression level changes in Trichodesmium erythraeum IMS101 during a 24-hr light and dark cycle. The diel gene expression analyzed in this study is further described in Muñoz-Marin, M., I. N. Shilova, T. Shi, H. Farnelid & J. P. Zehr. 2019. The transcriptional cycle is suited to daytime N2 fixation in the unicellular cyanobacterium “Candidatus Atelocyanobacterium thalassa” (UCYN-A). mBio 10:e02495-18. https://doi.org/10.1128/mBio.02495-18.
Project description:Plastid Encoded RNA Polymerase (PEP) is a bacterial type multisubunit RNA polymerase responsible for the bulk of transcription in chloroplasts. It contains four core subunits, which are orthologs of their cyanobacterial counterparts. In Arabidopsis thaliana PEP associates with 12 PEP-associated proteins (PAPs), which serve as peripheral subunits of the RNA polymerase. The exact contributions of PAPs to PEP function remain poorly understood. We show that a peripheral subunit of PEP, PAP1 (pTAC3), binds the same genomic loci as RpoB, a core subunit of PEP. PAP1 (pTAC3) and another peripheral PEP subunit, PAP7 (pTAC14), are required for RpoB binding to DNA. RpoB and another core PEP subunit, RpoC1, are expressed in pap1 (ptac3) and pap7 (ptac14) mutants. We propose that the peripheral subunits of PEP are required for the recruitment of core PEP subunits to DNA. pTAC3, binds the same genomic loci as RpoB, a core subunit of PEP. PAP1 pTAC3 and another peripheral PEP subunit, PAP7
2024-03-05 | GSE259283 | GEO
Project description:Major contribution of the unicellular cyanobacterium UCYN-B to oceanic nitrogen fixation
Project description:Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of non-lineage specific genes was conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families.
Project description:Study of the role of the FLV/DOT4 protein in post-transcriptional regulation of chloroplast gene expression. DOT4 is a pentatricopeptide repeat protein targeted to the chloroplast which regulates the editing of the rpoC1 transcript
Project description:Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of non-lineage specific genes was conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families. Whole transcriptome dual color arrays were used to discover differentially expressed genes following sub-lethal exposure to five cyanobacteria in D. pulex. RNA was isolated from eight independent and concurrently replicated exposures of Daphnia to control and five cyanobacteria conditions. RNA was hybridized to microarrays using a standard, control vs. treated design that included dye swaps. Cyanobacteria were Anabaena (ANA), Aphanizomenon (Aph), Cylindrospermopsis (Cyl), Nodularia (Nod) and Oscillatoria (Osl).
Project description:Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria in converting solar energy and high concentrations of CO2 (e.g. flue gas from coal power plants) efficiently into biomass and renewable energy sources is of interest to many research fields. In order to guide further advances in this area, a better understanding about the metabolic changes that occur under conditions of high CO2 is important. The objective of this study is to utilize genome-wide microarray expression profiling in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air and to determined the impact of high CO2 on cyanobacterial cell physiology and growth. Study of metabolic and cellular adaptations to high CO2 conditions in the unicellular diazotrophic cyanobacterium Cyanothece 51142. Two-condition experiment: 0.03% CO2 vs. 8% CO2. Biological replicates: 2; technical replicates: 3; Spots/ORF: 3 per Chip. Samples were collected at 7 time points over a period of two days, namely, Day1_30minLight (30min), Day1_2hrsLight (2hr), Day1_6hrsLight (6hr), Day1_1hrsDark (13hr), Day1-6hrsDark (18hr), Day2_6hrsLight (30hr) and Day2_6hrsDark (42hr).
Project description:Study of the role of the FLV/DOT4 protein in post-transcriptional regulation of chloroplast gene expression. DOT4 is a pentatricopeptide repeat protein targeted to the chloroplast which regulates the editing of the rpoC1 transcript The editing level of rpoC1 varies from one tissue to the other and because the main macroscopic phenotype of the flv/dot4 mutant are white leaf margins. We compared the leaf border to the leaf center of wild-type Col0 plants but also the leaf borders of col0 and flv/dot4 knock out mutants by sequencing total RNA depleted from rRNA to get a global view of gene expression (including post-transcrional modifications) of the 3 plant genomes: nucleus, chloroplast and mitochondria. mRNA seq on wild-type Col and FLV mutants knock out.