Project description:Predicting disease progression in chronic lymphocytic leukemia (CLL) remains challenging particularly in patients with Rai Stage 0/I disease that have an unmutated immunoglobulin heavy chain variable region (UM IGHV). Even though patients with UM IGHV have a poor prognosis and generally require earlier treatment, not all UM IGHV patients experience more rapid disease progression with some remaining treatment free for many years. This observation suggests biologic characteristics other than known prognostic factors influence disease progression. Alterations in long non-coding RNA (lncRNA) expression levels have been implicated in diagnosis and prognosis of various cancers, however, their role in disease progression of early Rai stage UM CLL is unknown. Here we use microarray analysis to compare lncRNA and mRNA profiles of Rai 0/I UM IGHV patients who progressed in <2 years relative to patients who had not progressed for >5 years. Over 1300 lncRNAs and 940 mRNAs were differentially expressed (fold change ≥ 2.0; p-value ≤ 0.05). Of interest, the differentially expressed lncRNAs G047155, TCAM1P, and uc.436, have known associated genes that have been linked to CLL. Thus, our study reveals differentially expressed lncRNAs in progressive early stage CLL requiring therapy versus indolent early Rai stage UM CLL. These lncRNAs have the potential to impact relevant biological processes and pathways that influence clinical outcome in CLL.
Project description:n order to decipher the underlying mechanisms we aimed to analyze and compare the global phosphoproteome of UM-CLL and M-CLL cells.
Project description:The role of lncRNA in uveal melanoma (UM) is not well studied. We used microarrays to identify the downstream targets of MAT1 lncRNA to invesitgate the mechanism of lncRNA in UM oncogenesis
Project description:The function and mechanism of lncRNA in human uveal melanoma (UM) is not clearly studied. We used microarrays to identify the downstream target genes of CANT1 lncRNA in UM cells to explain the mechanism of lncRNA in UM tumorigenesis
Project description:Several studies have demonstrated an impaired function of the microenvironment in chronic lymphocytic leukemia (CLL), contributing to immune evasion of tumor cells and disease progression. However, in CLL-like monoclonal B cell lymphocytosis (MBL) studies are scarce. Herein, a comprehensive characterization of the microenvironment in 59 MBL, 56 early stage CLL and 31 healthy controls was conducted. Gene expression arrays and qRT-PCR were performed on RNA from CD4+ peripheral blood cells; serum cytokines were measured by immunoassays and proteomic studies; and flow cytometry was applied to evaluate peripheral blood cytotoxic, Th1, exhausted and effector CD4+ T cells, besides monocytic CD14, CD4 and HLA-DR expression. MBL and early stage CLL showed a similar upregulation of cytotoxic and Th1-related genes, expanded perforin+ and CXCR3+ CD4+ T cells as well as PD1+ CD4+ T cells compared to controls. However, a strong inflammatory response was only identified in MBL: enhanced phagocytosis, pattern recognition receptors, IL8, HMGB1, TREM1 and acute response signaling pathways, along with increased levels of proinflammatory cytokines (remarkably IL8, IFN? and TNF?). Of note, this inflammatory drive was decreased in early stage CLL: diminished proinflammatory cytokines including IFN?, decreased IL8 signaling pathway and lower monocytic HLA-DR expression compared to MBL. Besides, this inflammation was especially reduced in IGHV mutated CLL, involving a decrease of the proinflammatory HMGB1 signaling pathway. These novel findings reveal a different pathophysiology between MBL and CLL, paving the way for the development of pre-emptive immunotherapies with optimal benefits at MBL and early stage CLL, before intense immune exhaustion.
Project description:Stabilizing mutations of NOTCH1 have been identified in about 10% of chronic lymphocytic leukemia (CLL) cases at diagnosis, with a higher frequency in unmutated IGHV (IGHV-UM) CLL, chemorefractory CLL and CLL in advanced disease phases. Clinically, the presence of NOTCH1 mutations is an independent predictor of overall survival in CLL and associates with resistance to anti-Cd20 immunotherapy. The Gene Expression Profile was generated to identify the peculiar molecular signatures of NOTCH1 mutated CLL in the context of IGHV-UM CLL.
Project description:The B-cell receptor (BCR) plays an important role in pathogenesis and progression of chronic lymphocytic leukemia (CLL). We investigated the BCR triggering-dependent mRNA modulation by stimulating CLL cells with immobilized anti-IgM. miRome of immobilized anti-IgM stimulated CLL cells (n=16) identified a substantial upregulation of miR-132 in both unmutated (UM) and mutated (M) IGHV subgroups. A parallel gene expression profile and an in-silico analysis to identify miR-132 target genes¸ allowed us to focus on SIRT1, that encodes for a histone deacetylase targeting several proteins including TP53. We defined a reduction of SIRT1 protein levels upon immobilized anti-IgM stimulation (P=0.001), and a concomitant increase in TP53 acetylation (P=0.0072). The TP53 target gene CDKN1A was consistently up-regulated in immobilized anti-IgM stimulated CLL cells. Of note, the miR-132 constitutive expression levels in CLL cases (n=134) were of similar magnitude of those obtained in in vitro immobilized anti-IgM stimulated CLL cells. Additionally, high miR-132 expression levels retained a favorable prognostic impact in M (P=0.005), but not in UM CLL patients (P=0.968). The described miR-132/SIRT1/TP53 axis, sequentially characterized by BCR triggering, miR-132 up-regulation, SIRT1 down-regulation and TP53 acetylation, should be considered in the light of emerging drugs targeting the BCR pathway in CLL.
Project description:The mutational status of the immunoglobulin heavy chain variable region (IGHV) defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and un-mutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from 9 UM-CLL and 9 M-CLL samples were analysed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Unsupervised clustering, based on the expression of 3521 identified proteins, separated CLL samples into two groups corresponding to IGHV mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells under-expressed proteins associated with cytoskeletal remodelling and over-expressed proteins associated with transcriptional and translational activity. Taken together, our findings indicated that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer.
Project description:The mutational status of the immunoglobulin heavy chain variable region (IGHV) defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and un-mutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from 9 UM-CLL and 9 M-CLL samples were analysed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Unsupervised clustering, based on the expression of 3521 identified proteins, separated CLL samples into two groups corresponding to IGHV mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells under-expressed proteins associated with cytoskeletal remodelling and over-expressed proteins associated with transcriptional and translational activity. Taken together, our findings indicated that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer.