Project description:Primary outcome(s): Relationship with mRNA expression of B7 family molecules in blood of patients with colorectal cancer and clinicopathological factors
Project description:Previous studies have reported sex differences in the incidence, prognosis and control of respiratory diseases and lung immunity. However, the role of sex hormones in the inflammatory response, and the mechanisms involved are unknown. Here, we explored whether variations in circulating hormone levels in the mouse estrous cycle could alter the inflammatory response to air pollutants such as ozone. To test this, female mice of the C57BL/6 background were exposed to 2ppm of ozone or filtered air (control) for 3 hours at different stages of the estrous cycle. Following exposure, lungs were harvested and total RNA was extracted. We used Inflammatory Response and Autoimmunity PCR Arrays to study differences in gene expression across the estrous cycle. Our results identified differentially expressed mRNA signatures in the lungs of females exposed to ozone at different stages of the estrous cycle. In addition, in silico pathway analyses discovered differences in mRNA expression and predicted regulatory networks in females exposed to ozone at different estrous cycle stages. These results indicate that the effects of ozone exposure in the female lung are affected by hormonal status.
Project description:Objective: MicroRNAs (miRNAs) control key elements of mRNA stability and likely contribute to the dysregulated lung gene expression observed in systemic sclerosis associated interstitial lung disease (SSc-ILD). We analyzed the miRNA gene expression of tissue and cells from SSc-ILD patients. A chronic lung fibrotic murine model was used. Methods: RNA was isolated from lung tissue of 12 SSc-ILD patients and 5 control lungs. High-resolution computed tomography (HRCT) was performed at baseline and 2-3 years after treatment. Lung fibroblasts and PBMCs were isolated from healthy controls and SSc-ILD patients. miRNA and mRNA were analyzed by microarray, quantitative polymerase chain reaction, and/or Nanostring; pathway analysis was performed by DIANA-miRPath v2.0 software. Wild-type and miR-155 deficient (miR-155ko) mice were exposed to bleomycin. Results: Lung miRNA microarray data distinguished patients with SSc-ILD from healthy controls with 185 miRNA differentially expressed (q<0.25). DIANA-miRPath revealed 57 KEGGs pathways related to the most dysregulated miRNAs. miR-155 and miR-143 were strongly correlated with progression of the HRCT score. Lung fibroblasts showed only mild expression of miR-155/miR-21 after several stimuli. miR-155 PBMC expression strongly correlated with lung function tests in SSc-ILD. miR-155ko mice developed milder lung fibrosis, survived longer, and showed a weaker lung induction of several genes after bleomycin exposure compared to wild-type mice. Conclusions: miRNAs are dysregulated in lungs and PBMCs of SSc-ILD patients. Based on mRNA-miRNA interaction analysis and pathway tools, miRNAs may play a role in the progression of the disease. Our findings suggest that targeting miR-155 might provide a novel therapeutic strategy for SSc-ILD.
Project description:Objective: MicroRNAs (miRNAs) control key elements of mRNA stability and likely contribute to the dysregulated lung gene expression observed in systemic sclerosis associated interstitial lung disease (SSc-ILD). We analyzed the miRNA gene expression of tissue and cells from SSc-ILD patients. A chronic lung fibrotic murine model was used. Methods: RNA was isolated from lung tissue of 12 SSc-ILD patients and 5 control lungs. High-resolution computed tomography (HRCT) was performed at baseline and 2-3 years after treatment. Lung fibroblasts and PBMCs were isolated from healthy controls and SSc-ILD patients. miRNA and mRNA were analyzed by microarray, quantitative polymerase chain reaction, and/or Nanostring; pathway analysis was performed by DIANA-miRPath v2.0 software. Wild-type and miR-155 deficient (miR-155ko) mice were exposed to bleomycin. Results: Lung miRNA microarray data distinguished patients with SSc-ILD from healthy controls with 185 miRNA differentially expressed (q<0.25). DIANA-miRPath revealed 57 KEGGs pathways related to the most dysregulated miRNAs. miR-155 and miR-143 were strongly correlated with progression of the HRCT score. Lung fibroblasts showed only mild expression of miR-155/miR-21 after several stimuli. miR-155 PBMC expression strongly correlated with lung function tests in SSc-ILD. miR-155ko mice developed milder lung fibrosis, survived longer, and showed a weaker lung induction of several genes after bleomycin exposure compared to wild-type mice. Conclusions: miRNAs are dysregulated in lungs and PBMCs of SSc-ILD patients. Based on mRNA-miRNA interaction analysis and pathway tools, miRNAs may play a role in the progression of the disease. Our findings suggest that targeting miR-155 might provide a novel therapeutic strategy for SSc-ILD. Lung biopsies taken from open lung biopsy from SSc-ILD patients (n=15 samples) and from cancer free control patients (n=5) during ressection of the lung tumor.