Project description:We performed small RNA-seq on Dicer KD and control porcine oocyte, and report endo-siRNAs corresponding to SINE1B are significantly down-regulated by Dicer knockdown and are essential for in vitro maturation of porcine oocyte
Project description:Colonization of genomes by a new selfish genetic element is detrimental to the host species and must lead to an efficient, repressive response. In vertebrates as well as in Drosophila, piRNAs repress transposons in the germ line while endogenous siRNAs take on this role in somatic cells. For endo-siRNAs as well as for piRNAs, it is unclear how an efficient response can be initiated de novo. Our experiments establish that the endo-siRNA pathway will target artificially introduced sequences without the need for a pre-existing template in the genome. This response is also triggered in transiently transfected cells, thus genomic integration is not essential. Deep sequencing revealed that corresponding endo-siRNAs are generated throughout the sequence, but preferentially from transcribed regions.
Project description:Colonization of genomes by a new selfish genetic element is detrimental to the host species and must lead to an efficient, repressive response. In vertebrates as well as in Drosophila, piRNAs repress transposons in the germ line while endogenous siRNAs take on this role in somatic cells. For endo-siRNAs as well as for piRNAs, it is unclear how an efficient response can be initiated de novo. Our experiments establish that the endo-siRNA pathway will target artificially introduced sequences without the need for a pre-existing template in the genome. This response is also triggered in transiently transfected cells, thus genomic integration is not essential. Deep sequencing revealed that corresponding endo-siRNAs are generated throughout the sequence, but preferentially from transcribed regions. Examination of 3 different cell lines.
Project description:Transposable elements are a serious threat for genome integrity and their control via small RNA mediated silencing pathways is an ancient strategy. The fruit fly Drosophila melanogaster has two silencing mechanisms that repress TEs expression: endogenous siRNAs (esiRNAs or endo-siRNAs) and Piwi-interacting small RNAs (piRNAs). The biogenesis of endo-siRNAs involves Loqs-PD, which acts predominantly during processing of dsRNA by Dcr-2, and R2D2 that primarily helps to direct siRNAs for loading into Ago2. We provide deep sequencing evidence consistent with the idea that R2D2 and Loqs-PD can function in part redundantly. Certain transposons display a preference for either dsRBD-protein for production or loading; this appeared to correlate neither with overall abundance, classification of the transposon or a specific site of genomic origin. The endo-siRNA biogenesis pathway in the germline operates according to the same principles as the existing model for the soma, and its impairment does not significantly affect piRNAs. Expanding the analysis, we confirmed the occurrence of somatic piRNA-like RNAs (pilRNAs) that show a ping-pong signature. We detected expression of the Piwi-family protein mRNAs only barely above background, indicating that the somatic pilRNAs may arise from a small sub-population of somatic cells that express a functional piRNA pathway.
Project description:Transposable elements (TEs) are widely represented in eukaryotic genomes. Recently, a set of small RNAs known as rasRNAs (repeat-associated small RNAs) have been related to the down-regulation of TEs conferring a means to safeguard genome integrity. Two key members of the rasRNAs group are piRNAs and endo-siRNAs. In this study, we have performed a comparative analysis of piRNAs and endo-siRNAs present in mouse oocytes, spermatozoa and zygotes, identified by deep sequencing and bioinformatic analysis. Both piRNAs and endo-siRNAs regulate TEs in addition to other repetitive elements such as tRNAs and rRNAs, suggesting an alternative role of rasRNAs with regard to translation regulation. The detection of piRNAs and endo-siRNAs in sperm cells and revealed also in zygotes, hints to their potential delivery to oocytes during fertilization. However, a comparative assessment of the three cell types indicates that both piRNAs and endo-siRNAs are mainly maternally inherited. Finally, we have assessed the role of the different rasRNA molecules in connection with amplification processes by way of the “ping-pong cycle”. Our results suggest that the ping-pong cycle can act on other rasRNAs, such as tRNA- and rRNA-derived fragments, thus not only being restricted to TEs during gametogenesis, as was evidenced in spermatozoa, oocytes and zygotes.
Project description:Transposable elements (TEs) are widely represented in eukaryotic genomes. Recently, a set of small RNAs known as rasRNAs (repeat-associated small RNAs) have been related to the down-regulation of TEs conferring a means to safeguard genome integrity. Two key members of the rasRNAs group are piRNAs and endo-siRNAs. In this study, we have performed a comparative analysis of piRNAs and endo-siRNAs present in mouse oocytes, spermatozoa and zygotes, identified by deep sequencing and bioinformatic analysis. Both piRNAs and endo-siRNAs regulate TEs in addition to other repetitive elements such as tRNAs and rRNAs, suggesting an alternative role of rasRNAs with regard to translation regulation. The detection of piRNAs and endo-siRNAs in sperm cells and revealed also in zygotes, hints to their potential delivery to oocytes during fertilization. However, a comparative assessment of the three cell types indicates that both piRNAs and endo-siRNAs are mainly maternally inherited. Finally, we have assessed the role of the different rasRNA molecules in connection with amplification processes by way of the M-bM-^@M-^\ping-pong cycleM-bM-^@M-^]. Our results suggest that the ping-pong cycle can act on other rasRNAs, such as tRNA- and rRNA-derived fragments, thus not only being restricted to TEs during gametogenesis, as was evidenced in spermatozoa, oocytes and zygotes. Comparative analysis from deep sequencing of piRNAs and endo-siRNAs in mouse oocytes, spermatozoa and zygotes
Project description:nbr/CG9247 gene regulates the length of a subset of miRNAs. It is not clear whether Nbr affects the length of other classes of small RNAs, such as piRNAs and endo-siRNAs. To address this, we compared small RNA population in wild-type, Df(2L)BSC312/+, nbr null (nbrf02257/Df(2L)BSC312), (nbr null; pCaSper-nbr (WT)), and (nbr null; pCaSper-nbr (D435A,E437A)). This approach revealed that, in addition to miRNAs, piRNAs and endo-siRNAs were also affected in their length in nbr null and nbr null; pCaSper-nbr (D435A,E437A).
Project description:Transposable elements are a serious threat for genome integrity and their control via small RNA mediated silencing pathways is an ancient strategy. The fruit fly Drosophila melanogaster has two silencing mechanisms that repress TEs expression: endogenous siRNAs (esiRNAs or endo-siRNAs) and Piwi-interacting small RNAs (piRNAs). The biogenesis of endo-siRNAs involves Loqs-PD, which acts predominantly during processing of dsRNA by Dcr-2, and R2D2 that primarily helps to direct siRNAs for loading into Ago2. We provide deep sequencing evidence consistent with the idea that R2D2 and Loqs-PD can function in part redundantly. Certain transposons display a preference for either dsRBD-protein for production or loading; this appeared to correlate neither with overall abundance, classification of the transposon or a specific site of genomic origin. The endo-siRNA biogenesis pathway in the germline operates according to the same principles as the existing model for the soma, and its impairment does not significantly affect piRNAs. Expanding the analysis, we confirmed the occurrence of somatic piRNA-like RNAs (pilRNAs) that show a ping-pong signature. We detected expression of the Piwi-family protein mRNAs only barely above background, indicating that the somatic pilRNAs may arise from a small sub-population of somatic cells that express a functional piRNA pathway. small RNA sampling experiment; small RNAs were prepared from head & thorax as well as dissected ovaries of Adult female Drosophila melanogaster. We used homozygous mutants of the dsRBD proteins Loqs and r2d2 to determine their contribution to the biogenesis of transposon-derived small RNAs. Heterozygous mutant animals served as control. For each RNA sample, we performed one deep-sequencing run without any treatment, and in parallel one sequencing run after periodate oxidation and beta-elimination. After this treatment, only Ago2, Piwi, Aub and Ago3-loaded small RNAs remain as they carry a 2'-O-methyl modification at their 3'-end. This helps to determine the loading status of the small RNAs detected. In total 8 different RNA samples were prepared and 16 libraries were sequenced.
Project description:Drosophila melanogaster expresses three classes of small RNAs, which are classified according to their mechanisms of biogenesis. MicroRNAs are ~22-23-nt, ubiquitously expressed small RNAs that are sequentially processed from hairpin-like precursors by Drosha/Pasha and Dcr-1/Loquacious complexes. MicroRNAs usually associate with AGO1 and regulate the expression of protein-coding genes. Piwi-interacting RNAs (piRNAs) of ~24-28-nt associate with Piwi-family proteins and can arise from single-stranded precursors. piRNAs function in transposon silencing and are mainly restricted to gonadal tissues. Endo-siRNAs are found in both germline and somatic tissues. These ~21-nt RNAs are produced by a distinct Dicer, Dcr-2, and do not depend on Drosha/Pasha complexes. They predominantly bind to AGO2 and target both mobile elements and protein-coding genes. Surprisingly, a subset of endo-siRNAs strongly depend for their production on the dsRNA-binding protein Loquacious (Loqs), thought generally to be a partner for Dcr-1 and a co-factor for miRNA biogenesis. Endo-siRNA production depends on a specific Loqs isoform, Loqs-PD, which is distinct from the one, Loqs-PB, required for the production of microRNAs. Paralleling their roles in the biogenesis of distinct small RNA classes, Loqs-PD and Loqs-PB bind to different Dicer proteins, with Dcr-1/Loqs-PB complexes and Dcr-2/Loqs-PD complexes driving microRNA and endo-siRNA biogenesis, respectively. Small RNA profiling by high throughput sequencing
Project description:Drosophila melanogaster expresses three classes of small RNAs, which are classified according to their mechanisms of biogenesis. MicroRNAs are ~22-23-nt, ubiquitously expressed small RNAs that are sequentially processed from hairpin-like precursors by Drosha/Pasha and Dcr-1/Loquacious complexes. MicroRNAs usually associate with AGO1 and regulate the expression of protein-coding genes. Piwi-interacting RNAs (piRNAs) of ~24-28-nt associate with Piwi-family proteins and can arise from single-stranded precursors. piRNAs function in transposon silencing and are mainly restricted to gonadal tissues. Endo-siRNAs are found in both germline and somatic tissues. These ~21-nt RNAs are produced by a distinct Dicer, Dcr-2, and do not depend on Drosha/Pasha complexes. They predominantly bind to AGO2 and target both mobile elements and protein-coding genes. Surprisingly, a subset of endo-siRNAs strongly depend for their production on the dsRNA-binding protein Loquacious (Loqs), thought generally to be a partner for Dcr-1 and a co-factor for miRNA biogenesis. Endo-siRNA production depends on a specific Loqs isoform, Loqs-PD, which is distinct from the one, Loqs-PB, required for the production of microRNAs. Paralleling their roles in the biogenesis of distinct small RNA classes, Loqs-PD and Loqs-PB bind to different Dicer proteins, with Dcr-1/Loqs-PB complexes and Dcr-2/Loqs-PD complexes driving microRNA and endo-siRNA biogenesis, respectively. Small RNA profiling by high throughput sequencing Total RNA was isolated using Trizol reagent (Invitrogen) and size-fractionated by PAGE into 19-24nt. These were independently processed and sequenced using the Illumina GAII platform. In total, six libraries were analyzed.