Project description:Nitrite-oxidizing bacteria are vital players in the global nitrogen cycle that convert nitrite to nitrate during the 2nd step of nitrification. Within this functional guild, the genus Nitrospira is among the most widespread and phylogenetically and physiologically diverse nitrite oxidizers and its members drive nitrite oxidation in many natural and biotechnological ecosystems. Despite their ecological and biotechnological importance, our understanding of Nitrospira’s energy metabolism is still limited. The main bottleneck for a detailed biochemical characterization of Nitrospira is biomass production, since they are slow-growing organisms and fastidious to culture. In this study, we cultured Nitrospira moscoviensis in a continuous stirred tank reactor system (CSTR) allowing constant biomass harvesting. Additionally, this cultivation setup enabled accurate control of physicochemical parameters and thus avoided fluctuating levels of nitrite and accumulation of nitrate. We performed transcriptome analysis and confirmed constant gene expression profiles in the chemostat culture over a period of two weeks. The transcriptomic data supports the predicted core metabolism of N. moscoviensis, including the reductive TCA cycle as a CO2 fixation pathway, the novel bd-like oxidase as terminal oxidase and the octaheme nitrite reductase involved in nitrogen assimilation. Additionally, the expression of multiple copies of respiratory complexes suggests functional differentiation of these copies within the respiratory chain. Transcriptome analysis also suggests a soluble and a membrane-bound gamma subunit as part of the nitrite oxidoreductase (NXR), the enzyme catalyzing nitrite oxidation. Overall, the transcriptome data provided novel insights into the metabolism of Nitrospira supporting the genome-based prediction of key pathways. Moreover, the application of a CSTR to cultivate Nitrospira is an important foundation for future proteomic and biochemical characterizations, which are crucial for a better understanding of canonical and complete nitrifying microorganisms.
Project description:Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.
2019-03-15 | PXD013103 | Pride
Project description:dark fermentation for biohydrogen production in thermophilic continuous stirred-tank reactor
Project description:In large-scale production processes, metabolic control is typically achieved by limited supply of essential nutrients like ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programs which result in production yield losses. This study is focused on transcriptional changes due to fluctuating ammonia supply, while sampling a continuously running two-compartment bioreactor system comprising a stirred tank reactor (STR) and a plug flow reactor (PFR). A previously created mutant E.coli SR was used to limit the reaction to environmntal influences via knock-out of stringent response. E. coli WT revealed highly diverging short-term transcriptional responses in ammonia fluctuation compared E. coli SR.
Project description:In large-scale production processes, metabolic control is typically achieved by limited supply of essential nutrients like glucose or ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programs. Previously, we characterized short- and long-term strategies of cells to adapt to glucose fluctuations. Here, we focused on fluctuating ammonia supply, while studying a continuously running two-compartment bioreactor system comprising a stirred tank reactor (STR) and a plug flow reactor (PFR). Genes were repeatedly switched on/off when E. coli returned to the STR. Moreover, E. coli revealed highly diverging long-term transcriptional responses in ammonia compared to glucose fluctuations. The identification of target genes may help to create robust cells and processes for large-scale application.
Project description:A continuous culture of Bifidobacterium longum NCC2705 was carried out in a 2.5-l reactor (Bioengineering AG, Wald, Switzerland), equipped with a Biospectra control system (Biospectra AG, Schlieren, Switzerland) and containing 2 l of MRS, added of 0.05% cysteine, inoculated with 2 % (v/v) preculture. The temperature was maintained at 37°C and the pH at 6.0 by addition of 5 M NaOH. The culture was stirred constantly at 250 rpm using two rushton type propellers. Anaerobic conditions were maintained by flushing the headspace of the reactor with CO2. After 8 h in batch mode the culture was run in continuous mode at a dilution rate of 0.1 h-1. Fresh medium was added using a peristaltic pump (Alitea, Bioengineering AG, Wald, Switzerland), and fermented broth harvested with a second peristaltic pump (Alitea, Bioengineering AG, Wald, Switzerland) set at a slightly higher flow rate. A stabilization period of 90 h (corresponding to nine reactor volume changes) was operated prior culture monitoring (t=0). Aliquots of 2 ml taken at t=31, 134 and 211 h were centrifuged (4,000 g, 1 min, room temperature) for transcriptomic analysis. Supernatants were discarded and cell pellets snap frozen in liquid nitrogen and stored at -80ºC until RNA-extraction. Keywords: Time course of Bifidobacterium longum in continuous culture
Project description:A continuous culture of Bifidobacterium longum NCC2705 was carried out in a 2.5-l reactor (Bioengineering AG, Wald, Switzerland), equipped with a Biospectra control system (Biospectra AG, Schlieren, Switzerland) and containing 2 l of MRS, added of 0.05% cysteine, inoculated with 2 % (v/v) preculture. The temperature was maintained at 37°C and the pH at 6.0 by addition of 5 M NaOH. The culture was stirred constantly at 250 rpm using two rushton type propellers. Anaerobic conditions were maintained by flushing the headspace of the reactor with CO2. After 8 h in batch mode the culture was run in continuous mode at a dilution rate of 0.1 h-1. Fresh medium was added using a peristaltic pump (Alitea, Bioengineering AG, Wald, Switzerland), and fermented broth harvested with a second peristaltic pump (Alitea, Bioengineering AG, Wald, Switzerland) set at a slightly higher flow rate. A stabilization period of 90 h (corresponding to nine reactor volume changes) was operated prior culture monitoring (t=0). Aliquots of 2 ml taken at t=31, 134 and 211 h were centrifuged (4,000 g, 1 min, room temperature) for transcriptomic analysis. Supernatants were discarded and cell pellets snap frozen in liquid nitrogen and stored at -80ºC until RNA-extraction. Keywords: Time course of Bifidobacterium longum in continuous culture Bifidobacterium longum NCC2705 at time 31 versus time 134 h and versus time 211 h in continuous culture. Two technical replicares with dyes swaps
Project description:Development of microtiter plate based microbioreactor cultivation for Aspergillus giganteus with quasi-continuous online measurements. Different parameters such as well geometry, shaking frequency and morphology controlling agents were investigated in order to optimize the microtiter plate cultivation and scattered light signal towards reproducibility and homogeneity. An optimized medium was developed and scalability into stirred tank bioreactor cultivation was analyzed. As a transferability indicator the supernatant of both cultivation systems was analyzed for secreted protein patterns with a focus on an antifungal protein (AFP) and alpha-sarcin. These proteins were identified via LC-MS/MS.
Project description:Biomass microbial communities from continuous stirred tank reactor (CSTR) bioreactors in University of Wisconsin, Madison, WI, USA Metagenome