Project description:Co-culture with human oral squamous cell carcinoma cells, 3A or NEM, or culture with each of their conditioned medium induced many osteoclasts from osteoclast precursor cells, which were generated by a 24-h pretreatment of RANKL or TNF-α. However, HO1-N-1 cells did not induce any osteoclasts. Osteoprotegerin, a decoy RANKL receptor, denosumab, an anti-RANKL antibody drug, and infliximab, an anti-TNF-α antibody drug, did not prevent this tumor-associated osteoclastogenesis. We compared the expression of molecules associated with osteoclastogenesis between 3A and HO1-N-1 cells.
Project description:RNA-Seq was applied to oral squamous cell carcinomas and matched normal oral tissue to measure gene expression patterns and identify examples of allelic imbalance. Oral squamous cell carcinomas (OSCC) and matched normal tissue from 3 patients.
Project description:RNA-Seq was applied to oral squamous cell carcinomas and matched normal oral tissue to measure gene expression patterns and identify examples of allelic imbalance.
Project description:Genome-wide expression array measurements for 9 head and neck squamous cell carcinomas (HNSCC) stratified by worst pattern of invasion (WPOI) Jayakar et al. (2016). Apolipoprotein E promotes invasion in oral squamous cell carcinoma. Li et al. (2013). Validation of the risk model: high-risk classification and tumor pattern of invasion predict outcome for patients with low-stage oral cavity squamous cell carcinoma.
Project description:Genome-wide expression array measurements for 9 head and neck squamous cell carcinomas (HNSCC) stratified by worst pattern of invasion (WPOI) Jayakar et al. (2016). Apolipoprotein E promotes invasion in oral squamous cell carcinoma. Li et al. (2013). Validation of the risk model: high-risk classification and tumor pattern of invasion predict outcome for patients with low-stage oral cavity squamous cell carcinoma. Comparison of transcription profiles between OSCC tumors with a more invasive (WPOI 5) versus a less invasive (WPOI 3) pattern of invasion using two independent Illumina platforms.
Project description:Identification of genes that are differentially regulated in fibroblasts derived from dysplastic oral mucosa and oral squamous cell carcinoma compared to fibroblasts derived from normal oral mucosa. Affymetrix microarrays were used to define differential gene expression. Populations of fibroblasts were isolated from human normal oral mucosa, oral dysplasia and oral squamous cell carcinoma, maintained in 3D collagen I biomatrices, RNA extracted and processed for Affymetrix arrays. Fibroblasts maintained as monolayers were also included as comparators.
Project description:Identification of genes that are differentially regulated in fibroblasts derived from dysplastic oral mucosa and oral squamous cell carcinoma compared to fibroblasts derived from normal oral mucosa. Affymetrix microarrays were used to define differential gene expression.