Project description:Despite increasing understanding of the prognostic importance of vascular stiffening linked to perivascular fibrosis in hypertension, the molecular and cellular regulation of this process is poorly understood. We aimed to study the functional role of microRNA-214 (miR-214) in the induction of perivascular fibrosis and endothelial dysfunction driving vascular stiffening. Out of 381 miRs screened in the perivascular tissues (PVAT) in response to angiotensin II (Ang II)-mediated hypertension, miR-214 showed the highest induction (8-fold, p<0.01). MiR-214 induction was pronounced in perivascular and circulating T cells, but not in PVAT adipocytes. Global deletion of miR-214-/- prevented Ang II-induced periaortic fibrosis Col1a1, Col3a1, Col5a1 and Tgfb1 expression, hydroxyproline accumulation and vascular stiffening, without difference in blood pressure. Mechanistic studies revealed that miR-214-/- mice were protected against endothelial dysfunction, oxidative stress and increased Nox2, all of which were induced by Ang II in WT mice. Ang II-induced recruitment of T cells into PVAT was abolished in miR-214-/- mice. Adoptive transfer of miR-214-/- T cells into RAG1-/- mice resulted in reduced perivascular fibrosis compared to the effect of WT T cells. Ang II induced hypertension caused significant change in the expression of 1380 T cell genes in WT, but only 51 in miR-214-/-. T cell activation, proliferation and chemotaxis pathways were differentially affected. miR-214-/- prevented Ang II-induction of pro-fibrotic T cell cytokines (IL-17, TNF, IL-9 and IFN) and chemokine receptors (CCR1, CCR2, CCR4, CCR5, CCR6 and CXCR3). This manifested in reduced in vitro and in vivo T cell chemotaxis resulting in attenuation of profibrotic perivascular inflammation. Translationally, we show that miR-214 is increased in plasma of hypertensive patients and is directly correlated to pulse wave velocity as a measure of vascular stiffness.
Project description:Dynamic chemical modifications of RNA represent novel and fundamental mechanisms that regulate stemness and tissue homeostasis. Rejuvenation and wound repair of mammalian skin are sustained by epidermal progenitor cells, which are localized within the basal layer of the skin epidermis. N6-methyladenosine (m6A) is one of the most abundant modifications found in eukaryotic mRNA and lncRNA (long non-coding RNA). In this report, we survey changes of m6A RNA methylomes upon epidermal differentiation, and identify Pvt1, a lncRNA whose m6A modification is critically involved in sustaining stemness of epidermal progenitor cells. With genome-editing and a mouse genetics approach, we show that ablation of m6A methyltransferase or Pvt1 impairs the self-renewal and wound healing capability of skin. Mechanistically, methylation of Pvt1 transcripts enhances its interaction with MYC and stabilizes the MYC protein in epidermal progenitor cells. Our study presents a global view of epitranscriptomic dynamics that occur during epidermal differentiation and identifies the m6A modification of Pvt1 as a key signaling event involved in skin tissue homeostasis and wound repair.
Project description:lncRNA PVT1 is an emerging lncRNA of significance in cancer due to alterations in both the RNA and genomic locus in multiple cancers and its established relationship to the oncogene MYC. Several recent studies have documented potential important roles for the lncRNA in ovarian cancer. Herein RNA sequencing was performed to determine the impact of PVT1 on global gene expression by performing RNA sequencing in SK-OV3 cells after silencing PVT1 (siPVT1) of cells grown upon transient knockdown of the lncRNA PVT1. SK-OV3 cells were cultured to 50% confluence in 6 well plates. Pooled siRNA’s to human PVT1 or non targeting control siRNA’s from Dharmacon were used to transfect SK-OV3 cells for 48 hrs in full serum media carefully maintaining cell confluence to not exceed approximately 80%. This was followed by RNA extraction and verification of knockdown using primers to PVT1 followed by sequencing. We find that 450 protein coding genes were differentially expressed between control (siControl) and siPVT1 cells with 50 additional found to be non-protein coding. The top 50 differentially expressed genes include 12 that were downregulated by siPVT1 and 32 that were upregulated. Several pathways associated with metabolic and stress processes, ribosome biogenesis and ncRNA processing were altered based on GO pathway analysis. Additional pathways included pathways associated with cell motility and differentiation.
Project description:We treated horse mammary derived epithelial cells (MDECs) with either a miR-214-3p mimic or a negative mimic control in the presence of the carcinogenic agent DMBA. Over expression of miR-214-3p suppressed cell apoptosis compared to the control, and suggests a potential oncogenic role in breast cancer.
Project description:Animals were sc dosed with 5mg/kg anti-miR-214 or control anti-miR, had UUO performed and were sacrificed at 7 days. n=4 animals per group, 2 groups
Project description:Abstract: Background & Aims: Unusual hypervascularity is a hallmark of human hepatocellular carcinoma (HCC). Although microRNA-214 (miR-214) is upregulated in other human cancers, it is downregulated in HCC. We elucidated the biological and clinical significance of miR-214 downregulation in HCC. Methods: MicroRNAs deregulated in HCC were identified using array-based MicroRNA profiling. A luciferase reporter assay confirmed target association between miR-214 and hepatoma-derived growth factor (HDGF). Tube formation and in vivo angiogenesis assays validated the roles of miR-214/HDGF in angiogenesis. Results: MiR-214 downregulation was associated with higher tumor recurrence and worse clinical outcomes. Ectopic expression of miR-214 suppressed xenograft tumor growth and microvascularity of the tumor and its surrounding tissues. The genes downregulated by ectopic expression of miR-214 were involved in the regulation of apoptosis, cell cycle, and angiogenesis. Integrated analysis disclosed HDGF as a downstream target of miR-214. Conditioned medium of HCC cells contained bioactivity to stimulate tube formation of human umbilical vein endothelial cells, which was abolished by pretreatment of the conditioned media with HDGF antibodies, silencing of HDGF expression or ectopic expression of miR-214 in the donor HCC cells. The angiogenic activity of the conditioned media lost by ectopic expression of miR-214 in the donor cells was restored by supplementation with recombinant HDGF. In vivo tumor angiogenesis assays showed significant suppression of tumor vascularity by ectopic expression of miR-214. Conclusions: A novel role of microRNA in tumrigenesis is identified. Downregulation of miR-214 contributes to unusual hypervascularity of HCC via activation of the HDGF paracrine pathway for tumor angiogenesis. To identify miRNAs that are deregulated in human HCC, 68 HCC and 21 non-tumor liver tissues were subjected to profiling of miRNA expression using miRNA arrays containing 739 human miRNA probes. Differentially expressed microRNAs were identified.
Project description:Abstract: Background & Aims: Unusual hypervascularity is a hallmark of human hepatocellular carcinoma (HCC). Although microRNA-214 (miR-214) is upregulated in other human cancers, it is downregulated in HCC. We elucidated the biological and clinical significance of miR-214 downregulation in HCC. Methods: MicroRNAs deregulated in HCC were identified using array-based MicroRNA profiling. A luciferase reporter assay confirmed target association between miR-214 and hepatoma-derived growth factor (HDGF). Tube formation and in vivo angiogenesis assays validated the roles of miR-214/HDGF in angiogenesis. Results: MiR-214 downregulation was associated with higher tumor recurrence and worse clinical outcomes. Ectopic expression of miR-214 suppressed xenograft tumor growth and microvascularity of the tumor and its surrounding tissues. The genes downregulated by ectopic expression of miR-214 were involved in the regulation of apoptosis, cell cycle, and angiogenesis. Integrated analysis disclosed HDGF as a downstream target of miR-214. Conditioned medium of HCC cells contained bioactivity to stimulate tube formation of human umbilical vein endothelial cells, which was abolished by pretreatment of the conditioned media with HDGF antibodies, silencing of HDGF expression or ectopic expression of miR-214 in the donor HCC cells. The angiogenic activity of the conditioned media lost by ectopic expression of miR-214 in the donor cells was restored by supplementation with recombinant HDGF. In vivo tumor angiogenesis assays showed significant suppression of tumor vascularity by ectopic expression of miR-214. Conclusions: A novel role of microRNA in tumrigenesis is identified. Downregulation of miR-214 contributes to unusual hypervascularity of HCC via activation of the HDGF paracrine pathway for tumor angiogenesis.
Project description:This study aimed to identify differential expressed genes before and after tranfection with miR-107, miR-198 and miR-214, using the KYSE450 esophagus cancer cell line as a model.