Project description:Here, de novo transcriptome assemblies for leaf and flower tissues of Forsythias were performed, resulting in 81913 unigenes of F. suspensa, 88491 unigenes of F. viridissima and 69458 unigenes of F. koreana (F. viridissima var. koreana). Classification of the annotated unigenes by gene ontology terms and KEGG pathways was used to explore transcriptomic differences among the Forsythias. Orthogroup was introduced to compare expression levels of unigenes in tissues from different species, which unveiled that three leaf tissues of Fosythias were closely correlated based on expression values of orthologous unigenes. Showing high expression mainly in leaves of F. viridissima and F. koreana, candidate homologs for genes involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were determined in these transcriptome assemblies.
Project description:Here, de novo transcriptome assemblies for leaf and flower tissues of Forsythias were performed, resulting in 81913 unigenes of F. suspensa, 88491 unigenes of F. viridissima and 69458 unigenes of F. koreana (F. viridissima var. koreana). Classification of the annotated unigenes by gene ontology terms and KEGG pathways was used to explore transcriptomic differences among the Forsythias. Orthogroup was introduced to compare expression levels of unigenes in tissues from different species, which unveiled that three leaf tissues of Fosythias were closely correlated based on expression values of orthologous unigenes. Showing high expression mainly in leaves of F. viridissima and F. koreana, candidate homologs for genes involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were determined in these transcriptome assemblies.
Project description:Here, de novo transcriptome assemblies for leaf and flower tissues of Forsythias were performed, resulting in 81913 unigenes of F. suspensa, 88491 unigenes of F. viridissima and 69458 unigenes of F. koreana (F. viridissima var. koreana). Classification of the annotated unigenes by gene ontology terms and KEGG pathways was used to explore transcriptomic differences among the Forsythias. Orthogroup was introduced to compare expression levels of unigenes in tissues from different species, which unveiled that three leaf tissues of Fosythias were closely correlated based on expression values of orthologous unigenes. Showing high expression mainly in leaves of F. viridissima and F. koreana, candidate homologs for genes involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were determined in these transcriptome assemblies.
Project description:To understand the biosynthesis of C. majus BIAs, we performed de novo transcriptome sequencing of leaf and root tissues of C. majus using Illumina high-throughput sequencing technology.
Project description:The eur1-11 which developed by EMS mutation has no ultradian rhythm in excised leaf. This data set was focused on how EUR and eur1-11 effect on de novo root regeneration.
Project description:In this study, we have performed Illumina based RNA sequencing to characterize the transcriptome and expression profiles of genes expressed in 4 tissues of A. carmichaelii. RNA sequencing and de novo transcriptome assembly fo A. carmichaelii resulted in a total of 128,183 unigenes with 56,928 unigenes being annotated using NCBI-nr database. Transcriptome profile and analysis for 4 tissues of A. carmichaelii showed that unigenes annotated as possible rate-determining steps of aconitine-type biosynthetic pathway were highly expressed in the root.
Project description:To reveal the molecular mechanism during de novo root regeneration from Arabidopsis leaf explants cultured on B5 medium without exogenous hormones, we carried out an RNA-seq experiment using detached leaf explants with partial petiole before culture (i.e. time 0) and 2 d after culturing (DAC) from12-d-old Col-0 seedlings. Gene expression of the wounded region (including the partial petiole and some surrounding tissues), which comprises regeneration-competent cells, was analyzed.
Project description:In this study, we aim to present a global transcriptome analysis of medicinal plant, Catharanthus roseus. We generated about 343 million high-quality reads from three tissues (leaf, root and flower) using Illumina platform. We performed an optimized de novo assembly of the reads and estimated transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses among tissue samples.