Project description:In this study, we exposed Caenorhabditis elegans wild types N2 to water collected from six sources in the Dutch village Sneek. The sources were: wastewater from a hospital, a community (80 households), a nursing home, influent into the local municipal wastewater treatment plant, effluent of the wastewater treatment plant, and surface water samples. The goal of the experiment was to determine if C. elegans can be used to identify pollutants in the water by transcriptional profiling. Age synchronized worms at developmental L4 larval stage were exposed to treatment for 24 hours. After flash freezing the samples, RNA was isolated, labeled and hybridized on oligo microarray (Agilent) slides.
Project description:Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures. Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures.
Project description:Three surface waters in Gainesville, Florida were used in a 48 hour whole effluents exposure to assess gene expression profiles of male fathead minnow liver. Microarray analysis was used to determine changes in gene expression of exposed fish to waters from a site downstream of a wastewater treatment plant (streamwater), a wastewater treatment plant (wastewater), and a lake (stormwater). Differences in gene expression between fish exposed to collected waters and controls were observed. Number of altered genes and biological processes were 1028 and 18 for stormwater; 787 and 19 for streamwater; and: 575 and 12 for wastewater. In general, the effects observed in all exposed fish were related with fatty acid metabolism, DNA repair, oxidation-reduction process, cell wall catabolic process and apoptosis. All exposed fish showed altered expression of genes related with DNA damage repair. In particular fish exposed to stormwater and streamwater showed downregulation of several key intermediates transcripts of cholesterol. The presence and environmental persistence of perfluorinated chemicals (PFCs) in these waters, the resemblance in known effects on transcripts with those found in this study, suggest that the set of genes differentially regulated in fathead minnows after 48 hours of exposure may be attributed to exposure to PFCs. Three surface water sites were chosen for effluent collection in Gainesville, Florida: A lake (stormwater), surface water downstream of a wastewater treatment plant (streamwater), and a wastewater treatment plant effluent used for landscaping irrigation (wastewater). Water from each site was collected two days prior to the fish exposure experiment using Chemfluor ® tubing and a 120 liters steel barrels coated with polyester resin (gel coat) to avoid cross-contamination. Three barrels for each effluent were collected during day 1. Water from the barrel was transported to the laboratory and pumped into four fiberglass cylinders in the aquatic toxicology facility. Water from each cylinder was then pumped into four replicate aquariums per treatment and kept for 1 day without fish (pre-treatment). On day 2, four male fathead minnows from a common tank were transferred to each replicate aquarium and kept for 48 hours, with one 75% water change after first 24 hours. The exposure system consisted of 40 L glass aquaria. Each exposure was conducted in quadruplicate and each aquarium contained the four male fish in 25 L of treatment water . The water used in the control treatment was carbon filtered, dechlorinated tap water. The positions of the treatment tanks were randomized and test initiation times were staggered to ensure an exposure/sampling interval of 48 h. The fish were not fed during the experiment. The temperature range of the water was 24-26 °C with a photoperiod of 16 h light: 8 h dark. Liver was isolate from 4 males indviduals for each treatment except for control group (3 individuals).