Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:This is a comparative experiments of three barley genotypes harbouring allelic differences at a locus designated QRMC-3HS putatively implicated in the assembly of the microbial communities thriving at the root-soil interface, the so called rhizosphere microbiota. The RNA-seq experiment aimed at identify genes differentially regulated among the genotypes at the locus of interest. As the selected genotypes host contrasting microbiotas, we hypothesised that differentially expressed genes at the locus represent primary candidates for the trait of interest (i.e., microbiota recruitment).
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. The DMFT INDEX (Decayed, Missing, Filled [DMF] teeth index used in dental epidemiology) values are provided for each sample We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.