Project description:Apomixis differs from sexual reproduction only in three major aspects: While the sexual megaspore mother cell undergoes meiosis, the apomictic initial cell omits or aborts meiosis (apomeiosis); the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis), and formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomictic species. To compare sexual and apomictic development at the cellular level, we then used a combination of laser-assisted microdissection with microarray and RNA-Seq analysis. Our study yields important new insights into the transcriptional basis underlying apomixis. Cell-type specific transcriptome profiles were generated from the apomictic initial cell (2 biological replicates), surrounding sporophytic tissues (sporo_nucellus; 2 biological replicates), egg cell, central cell and synergid cells (one sample each) from the triploid pseudogamous obligate apomict Boechera gunnisoniana by heterologous hybridization on the Affymetrix ATH1 arrays.
Project description:A new genome assembly and annotation of Paspalum notatum Flugge var saurae, obtained from a plant native to the center of origin of the species.