Project description:We overexpressed miR-212/132 by AAV9 in mouse model of doxorubicin-induced cardiotoxicity and wanted to identify myocardial targets of miR-212/132 in this model.
Project description:miR-132 and miR-212 are structurally-related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same non-coding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/212 double knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/212 double knockout line explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/212 deletion increased the expression of 1,138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that, these two genes may function in a complex, non-redundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders
Project description:To identify the target of miR-212, miR-132 and HIC1, we have employed whole genome microarray expression profiling on the human breast cancer MCF7 cells. To generate miR-212/132 or HIC1 inducible MCF7 cells, doxycycline-dependent miR-212/132 or HIC1 gene expression system was used. Either Tet-ON miR-212/132 MCF7 or Tet-ON HIC1 MCF7 were treated with 1μg/ml of Doxycycline for 36 hours with EMEM containing 0.01 mg/ml bovine insulin and 10% FCS. Two independent experiments were performed.
Project description:Transcriptomic profiling of miR-132/212-deficient and WT CD4 T cells isolated from spleens of L donovani infected mice (d28) to determine the effects of miR-132/212 on CD4 T cell activation in vivo. This was combined by transcriptomic analysis of early stage in vitro activated WT and miR-132/212-deficient CD4 T cells to identify direct miR-132/212 targets in CD4 T cells.
Project description:To identify the target of miR-212, miR-132 and HIC1, we have employed whole genome microarray expression profiling on the human breast cancer MCF7 cells.
Project description:miR-132 and miR-212 are structurally-related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same non-coding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/212 double knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/212 double knockout line explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/212 deletion increased the expression of 1,138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that, these two genes may function in a complex, non-redundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders Hippocampal mRNA was isolated from CaMKII-Cre::miR-132/212f/f, tTA::miR132, and tTA::miR212 animals, as well as their respective nontransgenic controls. cDNA from six animals was pooled into three independent biological replicates for each. Libraries were prepared according to the Illumina TruSeqTM Sample Preparation Guide and sequenced using an Illumina Genome Analyzer II. Sequences were aligned to the UCSC mm9 reference genome using Bowtie v0.12.7 and custom R scripts. The sequence data have been submitted to the NCBI Short Read Archive with accession number in progress. Relative abundance was measured in Fragments Per Kilobase of exon per Million fragments mapped using Cufflinks v1.2.
Project description:Improved therapy of cancer has significantly increased the lifespan of patients. However, cancer survivors face an increased risk of cardiovascular complications due to adverse effects of cancer therapies. The chemotherapy drug doxorubicin is well known to induce myofibril damage and cardiac atrophy. Our aim was to test potential counteracting effects of the pro-hypertrophic miR-212/132 family in doxorubicin-induced cardiotoxicity. In vitro, overexpression of the pro-hypertrophic miR-212/132 cluster in primary rodent and human iPSC-derived cardiomyocytes inhibited doxorubicin-induced toxicity. Next, a disease model of doxorubicin-induced cardiotoxicity was established in male C57BL/6N mice. Mice were administered either adeno-associated virus (AAV)9-control or AAV9-miR-212/132 to achieve myocardial overexpression of the miR-212/132 cluster. AAV9-mediated overexpression limited cardiac atrophy by increasing left ventricular mass and wall thickness, decreased doxorubicin-mediated apoptosis, and prevented myofibril damage. Based on a transcriptomic profiling we identified fat storage-inducing transmembrane protein 2 (Fitm2) as a novel target and downstream effector molecule responsible, at least in part, for the observed miR-212/132 anti-cardiotoxic effects. Overexpression of Fitm2 partially reversed the effects of miR-212/132. Overexpression of the miR-212/132 family reduces development of doxorubicin-induced cardiotoxicity and thus could be a therapeutic entry point to limit doxorubicin-mediated adverse cardiac effects.
Project description:To identify potential mechanisms underlying the phenotype of miR-132/212 KO mice under short photoperiods, we used quantitative mass spectrometry to analyze the SCN proteomes of miR-132/212 KO and WT mice under a 8:16 LD schedule at 4 time points, spaced 6h apart, across a 24h cycle (n=4 per time point per genotype). Quantification was achieved using a spike-in reference of three murine neural cell lines, including Neuro2A, and the adult mouse hypothalamic cell lines mHypoA-2/28 (CLU188) and mHypoA-SCN mix (CLU497) that had been labeled by SILAC (stable isotope labeling by amino acids in cell culture).
Project description:MicroRNAs have emerged as key regulators of B cell fate decisions and immune function. Deregulation of several microRNAs in B cells leads to the development of autoimmune disease and cancer in mice. We demonstrate that the microRNA-212/132 cluster (miR-212/132) is induced in B cells in response to B cell receptor signaling. Enforced expression of miR-132 results in a block in early B cell development at the pre-pro-B cell to pro-B cell transition and induces apoptosis in primary bone marrow B cells. Importantly, loss of miR-212/132 results in increased B cell output under non-homeostatic conditions. We find that miR-212/132 regulates B lymphopoiesis by targeting the transcription factor SOX4. Co-expression of SOX4 with miR-132 rescues the defect in B cell development from over-expression of miR-132 alone. In addition, we show that the expression of miR-132 in cells that are prone to spontaneous B cell cancers can have a protective effect on cancer development. We have thus uncovered a novel regulator of B cell lineage specification that may potential applications in B cell cancer therapy
Project description:Despite some success of pharmacotherapies targeting primarily neurohormonal dysregulation, heart failure is a growing global pandemic with increasing burden. Treatments that improve the disease by reversing heart failure at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators of gene expression, acting through complex biological networks, and playing thereby essential roles in disease progression. Adverse structural remodelling of the left ventricle due to myocardial infarction (MI) is a common pathological feature leading to heart failure. We previously demonstrated increased cardiomyocyte expression of the miR-212/132 family during pathological cardiac conditions. Transgenic mice overexpressing the miR-212/132 cluster (miR-212/132-TG) develop pathological cardiac remodelling and die prematurely from progressive HF. Using both knockout and antisense strategies, we have shown miR-132 to be both necessary and sufficient to drive the pathological growth of cardiomyocytes in a murine model of left ventricular pressure overload. Based on the findings, we proposed that miR-132 may serve as a therapeutic target in heart failure therapy. Here we provide novel mechanistic insight and translational evidence for the therapeutic efficacy in small and large animal models (n=135) of heart failure. We demonstrate strong PK/PD relationship, dose-dependent efficacy and high clinical potential of a novel optimized synthetic locked nucleic acid phosphorothioate backbone antisense oligonucleotide inhibitor of miR-132 (antimiR-132) as a next-generation heart failure therapeutic.