Project description:Self-renewal of embryonic stem cells (ESCs) cultured in serum-LIF is incomplete with some cells initiating differentiation. While this is reflected in heterogeneous expression of naive pluripotency transcription factors (TFs), the link between TF heterogeneity and differentiation is not fully understood. Here we purify ESCs with distinct TF expression levels from serum-LIF cultures to uncover early events during commitment from naïve pluripotency. ESCs carrying fluorescent Nanog and Esrrb reporters show Esrrb downregulation only in NANOGlow cells. Independent Esrrb reporter lines demonstrate that ESRRBnegative ESCs cannot effectively self-renew. Upon ESRRB loss, pre-implantation pluripotency gene expression collapses. ChIP-Seq identifies different regulatory element classes that bind both OCT4 and NANOG in ESRRBhigh cells. Class I elements lose NANOG and OCT4 binding in ESRRBnegative ESCs and associate with genes expressed preferentially in naïve ESCs. In contrast, class II elements retain OCT4 but not NANOG binding in ESRRBnegative cells and associate with more broadly expressed genes. Therefore, mechanistic differences in TF function act cumulatively to restrict potency during exit from naïve pluripotency.
Project description:We report the application of sequencing technology for profiling of genome-wide ESRRB binding in mouse ES cells. We generated genome-wide chromatin-state maps of mouse embryonic stem cells maintained in pluripotent state (2iL) and differentiated for 48 and 96 hours (48 and 96). We find that the large majority of ESRRB binding occurs in 2iL and at 48 hours and that several formative genes promoters are bound by ESRRB in 2iL and at 48h. Moreover ESRRB peaks on naïve genes (e.g. Tfcp2l1, Nanog) decrease as soon as cells start differentiating while peaks on formative genes are present in 2iL and the signal is maintained (or increased) at 48 hours, further endorsing the concept of Esrrb as a direct activator of the formative gene program during the Reversible phase.
Project description:Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell identity genes. The organisation of these clusters, and how they are remodelled upon developmental transitions remain poorly understood. Here, we report the existence of two types of enhancer units within SEs typified by distinctive CpG methylation dynamics in embryonic stem cells (ESCs). We find that these units are either prone for decommissioning or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in regulating the activity of ESC-specific enhancer units and propose that the developmentally regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our study provides insights into the molecular events that follow the loss of ESRRB binding, and offers a mechanism by which the naive pluripotency transcriptional programme can be partially reset upon embryo implantation.
Project description:Self-renewal of embryonic stem cells (ESCs) cultured in serum-LIF is incomplete with some cells initiating differentiation. While this is reflected in heterogeneous expression of naive pluripotency transcription factors (TFs), the link between TF heterogeneity and differentiation is not fully understood. Here we purify ESCs with distinct TF expression levels from serum-LIF cultures to uncover early events during commitment from naïve pluripotency. ESCs carrying fluorescent Nanog and Esrrb reporters show Esrrb downregulation only in NANOGlow cells. Independent Esrrb reporter lines demonstrate that ESRRBnegative ESCs cannot effectively self-renew. Upon ESRRB loss, pre-implantation pluripotency gene expression collapses. ChIP-Seq identifies different regulatory element classes that bind both OCT4 and NANOG in ESRRBhigh cells. Class I elements lose NANOG and OCT4 binding in ESRRBnegative ESCs and associate with genes expressed preferentially in naïve ESCs. In contrast, class II elements retain OCT4 but not NANOG binding in ESRRBnegative cells and associate with more broadly expressed genes. Therefore, mechanistic differences in TF function act cumulatively to restrict potency during exit from naïve pluripotency.
Project description:In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming. Global gene expression effects of silencing the Esrrb gene. We used microarrays to detail the global programme of gene expression after silencing the Esrrb gene. Keywords: time-course Three biological replicates each for control GFP and Esrrb RNAi. The global gene expression profiles of the Esrrb knockdown cells were compared to control GFP knockdown cells for days 2, 4 and 6.
Project description:To characterize the reprogramming of epiblast stem cells (EpiSCs) into embryonic stem cells (ESCs) induced by Esrrb, we performed microarray analysis of Tet-on Esrrb EpiSCs after treatment with doxycycline (Dox).
Project description:We report nuclear receptor Esrrb's responsive genes with or without Esrrb ligand DY131 in DU145 cells. Using Esrrb-null cells, we used RNA-Seq to find Esrrb responsive genes. In addition, we tested DY131-driven Esrrb-dependent genes to test the ligand dependency of Esrrb in regulating gene expression. Control vector transfected cells with vehicle treatment, Esrrb expression vector transfected cell with vehicle treatment, control vector transfected cells with DY131 treatment, Esrrb expression vector transfected cell with DY131 treatment.
Project description:We report the application of genome-wide RNA-sequencing analysis for Esrrb WT and conditional Esrrb KO mES cells after differentation for 48 hours. Global transcriptome profiling revealed impaired induction of formative genes in conditional KO cells compared to WT cells.
Project description:In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming. This SuperSeries is composed of the SubSeries listed below.