Project description:In the present study, the membrane lipid composition of corals from a region with tidally induced upwelling was investigated. The coral community is subject to strong temperature oscillations yet flourishes as a result of adaptation. Glycerophosphocholine profiling of the dominant pocilloporid coral, Seriatopora caliendrum, was performed using a validated method. The coral inhabiting the upwelling region shows a definite shift in the ratio of lipid molecular species, covering several subclasses. Mainly, the coral possesses a higher percentage of saturated, monounsaturated and polyunsaturated plasmanylcholines and a lower percentage of polyunsaturated phosphatidylcholines. Higher levels of lyso-plasmanylcholines containing saturated or monounsaturated fatty acid chains were also revealed in coral tissue at the distal portion of the branch. Based on the physicochemical properties of these lipids, we proposed mechanisms for handling cellular membrane perturbations, such as tension, induced by thermal oscillation to determine how coral cells are able to spontaneously maintain their physiological functions, in both molecular and physical terms. Interestingly, the biochemical and biophysical properties of these lipids also have beneficial effects on the resistance, maintenance, and growth of the corals. The results of this study suggest that lipid metabolic adjustment is a major factor in the adaption of S. caliendrum in upwelling regions.
Project description:Reef-building corals form complex relationships with a range of microorganisms including bacteria, archaea, fungi and the unicellular microalgae of the genus Symbiodinium, which together form the coral holobiont. These symbionts are known to have both beneficial and deleterious effects on their coral host, but little is known about what the governing factors of these relationships are, or the interactions that exist between the different members of the holobiont and their environment. Here we used 16S ribosomal RNA gene amplicon sequencing to investigate how archaeal and bacterial communities associated with the widespread scleractinian coral Seriatopora hystrix are influenced by extrinsic (reef habitat and geographic location) and intrinsic (host genotype and Symbiodinium subclade) factors. Bacteria dominate the microbiome of S. hystrix, with members of the Alphaproteobacteria, Gammaproteobacteria and Bacteriodetes being the most predominant in all samples. The richness and evenness of these communities varied between reef habitats, but there was no significant difference between distinct coral host lineages or corals hosting distinct Symbiodinium subclades. The coral microbiomes correlated to reef habitat (depth) and geographic location, with a negative correlation between Alpha- and Gammaproteobacteria, driven by the key members of both groups (Rhodobacteraceae and Hahellaceae, respectively), which showed significant differences between location and depth. This study suggests that the control of microbial communities associated with the scleractinian coral S. hystrix is driven primarily by external environmental conditions rather than by those directly associated with the coral holobiont.
Project description:Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection.Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a approximately 30 m depth range) at three locations on the Great Barrier Reef (n = 336). The populations were assessed for genetic structure using a combination of mitochondrial (putative control region) and nuclear (three microsatellites) markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium). Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location.This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix.
Project description:Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential contribution of mesophotic corals to shallow coral reef recovery. However, the reproductive biology of mesophotic S. hystrix and its potential to recolonize shallow reefs is currently unknown. This study reports for the first time, different temporal scales of reproductive periodicity and larval settlement of S. hystrix from an upper mesophotic reef (40 m depth) in Okinawa. We examined reproductive seasonality, lunar, and circadian periodicity (based on polyp dissection, histology, and ex situ planula release observations) and larval settlement rates in the laboratory. Mesophotic S. hystrix reproduced mainly in July and early August, with a small number of planulae being released at the end of May, June and August. Compared to shallow colonies in the same region, mesophotic S. hystrix has a 4-month shorter reproductive season, similar circadian periodicity, and smaller planula size. In addition, most of the planulae settled rapidly, limiting larval dispersal potential. The shorter reproductive season and smaller planula size may result from limited energy available for reproduction at deeper depths, while the similar circadian periodicity suggests that this reproductive aspect is not affected by environmental conditions differing with depth. Overall, contribution of mesophotic S. hystrix to shallow reef rapid recovery appears limited, although they may recruit to shallow reefs through a multistep process over a few generations or through random extreme mixing such as typhoons.
Project description:BACKGROUND:Divergent natural selection across environmental gradients has been acknowledged as a major driver of population and species divergence, however its role in the diversification of scleractinian corals remains poorly understood. Recently, it was demonstrated that the brooding coral Seriatopora hystrix and its algal endosymbionts (Symbiodinium) are genetically partitioned across reef environments (0-30 m) on the far northern Great Barrier Reef. Here, we explore the potential mechanisms underlying this differentiation and assess the stability of host-symbiont associations through a reciprocal transplantation experiment across habitats ('Back Reef', 'Upper Slope' and 'Deep Slope'), in combination with molecular (mtDNA and ITS2-DGGE) and photo-physiological analyses (respirometry and HPLC). RESULTS:The highest survival rates were observed for native transplants (measured 14 months after transplantation), indicating differential selective pressures between habitats. Host-symbiont assemblages remained stable during the experimental duration, demonstrating that the ability to "shuffle" or "switch" symbionts is restricted in S. hystrix. Photo-physiological differences were observed between transplants originating from the shallow and deep habitats, with indirect evidence of an increased heterotrophic capacity in native deep-water transplants (from the 'Deep Slope' habitat). Similar photo-acclimatisation potential was observed between transplants originating from the two shallow habitats ('Back Reef' and 'Upper Slope'), highlighting that their genetic segregation over depth may be due to other, non-photo-physiological traits under selection. CONCLUSIONS:This study confirms that the observed habitat partitioning of S. hystrix (and associated Symbiodinium) is reflective of adaptive divergence along a depth gradient. Gene flow appears to be reduced due to divergent selection, highlighting the potential role of ecological mechanisms, in addition to physical dispersal barriers, in the diversification of scleractinian corals and their associated Symbiodinium.
Project description:Mesophotic coral ecosystems (MCEs, reefs between 30 and 150 m depth) have been hypothesized to contribute to shallow reef recovery through the recruitment of larvae. However, few studies have directly examined this. Here we used mesophotic colonies of Seriatopora hystrix, a depth generalist coral, to investigate the effect of light intensity on larval behavior and settlement through ex situ experiments. We also investigated juvenile survival, growth, and physiological acclimation in situ. Bleached larvae and a significant reduction in settlement rates were found when the mesophotic larvae were exposed to light conditions corresponding to shallow depths (5 and 10 m) ex situ. The in situ experiments showed that mesophotic juveniles survived well at 20 and 40 m, with juveniles in shaded areas surviving longer than three months at 3-5 m during a year of mass bleaching in 2016. Juvenile transplants at 20 m showed a sign of physiological acclimation, which was reflected by a significant decline in maximum quantum yield. These results suggest that light is a significant factor for successful recolonization of depth-generalist corals to shallow reefs. Further, recolonization of shallow reefs may only occur in shaded habitats or potentially through multigenerational recruitments with intermediate depths acting as stepping stones.